CMU生成式人工智能大模型:从入门到放弃(七)

引言

在前面的系列博客中,我们探讨了生成式对抗网络(GANs)的基本原理和应用。今天,我们将深入探讨变分自编码器(VAEs),这是一种能够学习数据的低维表示并从中生成新数据的生成式模型。

变分自编码器(VAEs)

VAEs是一种结合了自编码器的架构和变分推断原理的生成式模型。它们通过学习输入数据的潜在表示来工作,这些表示可以被用来生成新的数据点。

VAEs的工作原理

VAEs包含两个主要部分:

  1. 编码器(Encoder):编码器网络学习输入数据的潜在表示,通常是一个均值和方差的分布,用于采样潜在变量。
  2. 解码器(Decoder):解码器网络尝试从潜在表示重建输入数据。

VAEs的训练

VAEs的训练目标是最小化数据集的负对数似然,并加上一个正则化项,这个正则化项鼓励潜在空间的密度。这通常通过重参数化技巧来实现,该技巧允许我们通过随机采样来优化潜在表示。

变分推断

变分推断是一种统计方法,用于近似复杂分布的后验概率。在VAEs中,变分推断被用来近似潜在变量的后验分布。

均值场近似(Mean Field Approximation)

均值场近似是一种简化的变分推断方法,它假设潜在变量之间相互独立。这种方法通过将潜在空间分解为独立的变量来简化优化问题。

KL散度(KL Divergence)

KL散度是衡量两个概率分布差异的指标。在VAEs中,KL散度被用来正则化潜在空间,确保潜在表示不会过于稀疏。

重参数化技巧(Reparameterization Trick)

重参数化技巧是VAEs中的一个关键技术,它允许我们通过随机采样来优化潜在表示。这个技巧通过将随机变量的采样过程与网络参数分离,使得梯度下降成为可能。

VAEs的应用

VAEs已经被应用于多种任务,包括图像生成、文本生成和音频生成。它们能够生成高质量的数据,这些数据在视觉上或统计上与训练数据相似。

结语

在本篇博客中,我们探讨了变分自编码器(VAEs)的基本原理、训练方法和应用。VAEs是一种强大的生成式模型,能够学习数据的低维表示并从中生成新的数据点。在下一篇博客中,我们将继续探讨VAEs的变体以及它们在实际应用中的使用。

课件下载地址

https://download.csdn.net/download/u013818406/89922762

相关推荐
PyAIExplorer25 分钟前
基于 OpenCV 的图像 ROI 切割实现
人工智能·opencv·计算机视觉
风口猪炒股指标27 分钟前
技术分析、超短线打板模式与情绪周期理论,在市场共识的形成、分歧、瓦解过程中缘起性空的理解
人工智能·博弈论·群体博弈·人生哲学·自我引导觉醒
ai_xiaogui1 小时前
一键部署AI工具!用AIStarter快速安装ComfyUI与Stable Diffusion
人工智能·stable diffusion·部署ai工具·ai应用市场教程·sd快速部署·comfyui一键安装
聚客AI2 小时前
Embedding进化论:从Word2Vec到OpenAI三代模型技术跃迁
人工智能·llm·掘金·日新计划
weixin_387545642 小时前
深入解析 AI Gateway:新一代智能流量控制中枢
人工智能·gateway
聽雨2372 小时前
03每日简报20250705
人工智能·社交电子·娱乐·传媒·媒体
二川bro3 小时前
飞算智造JavaAI:智能编程革命——AI重构Java开发新范式
java·人工智能·重构
acstdm3 小时前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习
澪-sl3 小时前
基于CNN的人脸关键点检测
人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测·卷积神经网络
羊小猪~~3 小时前
数据库学习笔记(十七)--触发器的使用
数据库·人工智能·后端·sql·深度学习·mysql·考研