CMU生成式人工智能大模型:从入门到放弃(七)

引言

在前面的系列博客中,我们探讨了生成式对抗网络(GANs)的基本原理和应用。今天,我们将深入探讨变分自编码器(VAEs),这是一种能够学习数据的低维表示并从中生成新数据的生成式模型。

变分自编码器(VAEs)

VAEs是一种结合了自编码器的架构和变分推断原理的生成式模型。它们通过学习输入数据的潜在表示来工作,这些表示可以被用来生成新的数据点。

VAEs的工作原理

VAEs包含两个主要部分:

  1. 编码器(Encoder):编码器网络学习输入数据的潜在表示,通常是一个均值和方差的分布,用于采样潜在变量。
  2. 解码器(Decoder):解码器网络尝试从潜在表示重建输入数据。

VAEs的训练

VAEs的训练目标是最小化数据集的负对数似然,并加上一个正则化项,这个正则化项鼓励潜在空间的密度。这通常通过重参数化技巧来实现,该技巧允许我们通过随机采样来优化潜在表示。

变分推断

变分推断是一种统计方法,用于近似复杂分布的后验概率。在VAEs中,变分推断被用来近似潜在变量的后验分布。

均值场近似(Mean Field Approximation)

均值场近似是一种简化的变分推断方法,它假设潜在变量之间相互独立。这种方法通过将潜在空间分解为独立的变量来简化优化问题。

KL散度(KL Divergence)

KL散度是衡量两个概率分布差异的指标。在VAEs中,KL散度被用来正则化潜在空间,确保潜在表示不会过于稀疏。

重参数化技巧(Reparameterization Trick)

重参数化技巧是VAEs中的一个关键技术,它允许我们通过随机采样来优化潜在表示。这个技巧通过将随机变量的采样过程与网络参数分离,使得梯度下降成为可能。

VAEs的应用

VAEs已经被应用于多种任务,包括图像生成、文本生成和音频生成。它们能够生成高质量的数据,这些数据在视觉上或统计上与训练数据相似。

结语

在本篇博客中,我们探讨了变分自编码器(VAEs)的基本原理、训练方法和应用。VAEs是一种强大的生成式模型,能够学习数据的低维表示并从中生成新的数据点。在下一篇博客中,我们将继续探讨VAEs的变体以及它们在实际应用中的使用。

课件下载地址

https://download.csdn.net/download/u013818406/89922762

相关推荐
豌豆学姐2 分钟前
Sora2 视频生成 API 如何对接?附可直接使用的开源前端项目
前端·人工智能·开源·aigc·php
普鲁夕格13 分钟前
AI翻唱!赛马娘全角色&曼波RVC模型下载,支持一键AI翻唱/变声
人工智能
薛不痒16 分钟前
深度学习介绍以及深度学习相关配置
人工智能·深度学习
玄同76534 分钟前
Python 正则表达式:LLM 噪声语料的精准清洗
人工智能·python·自然语言处理·正则表达式·nlp·知识图谱·rag
2401_8414956439 分钟前
【机器学习】BP神经网络
人工智能·python·神经网络·机器学习·梯度下降法·反向传播·前向传播
Coovally AI模型快速验证1 小时前
当小龙虾算法遇上YOLO:如何提升太阳能电池缺陷检测精度?
人工智能·深度学习·算法·yolo·目标检测·无人机
深圳行云创新1 小时前
行云创新 AI+CloudOS:AI + 云原生落地新范式
人工智能·云原生·系统架构
AI视觉网奇1 小时前
火星- ue数字人智能体 学习笔记
人工智能·笔记·学习
边缘计算社区1 小时前
第12届全球边缘计算大会-精彩瞬间
大数据·人工智能·边缘计算
后端小肥肠1 小时前
DeepSeek3.2+Coze王炸组合!小红书这个隐秘赛道有人成交7万单,有手就行!
人工智能·aigc·coze