CMU生成式人工智能大模型:从入门到放弃(七)

引言

在前面的系列博客中,我们探讨了生成式对抗网络(GANs)的基本原理和应用。今天,我们将深入探讨变分自编码器(VAEs),这是一种能够学习数据的低维表示并从中生成新数据的生成式模型。

变分自编码器(VAEs)

VAEs是一种结合了自编码器的架构和变分推断原理的生成式模型。它们通过学习输入数据的潜在表示来工作,这些表示可以被用来生成新的数据点。

VAEs的工作原理

VAEs包含两个主要部分:

  1. 编码器(Encoder):编码器网络学习输入数据的潜在表示,通常是一个均值和方差的分布,用于采样潜在变量。
  2. 解码器(Decoder):解码器网络尝试从潜在表示重建输入数据。

VAEs的训练

VAEs的训练目标是最小化数据集的负对数似然,并加上一个正则化项,这个正则化项鼓励潜在空间的密度。这通常通过重参数化技巧来实现,该技巧允许我们通过随机采样来优化潜在表示。

变分推断

变分推断是一种统计方法,用于近似复杂分布的后验概率。在VAEs中,变分推断被用来近似潜在变量的后验分布。

均值场近似(Mean Field Approximation)

均值场近似是一种简化的变分推断方法,它假设潜在变量之间相互独立。这种方法通过将潜在空间分解为独立的变量来简化优化问题。

KL散度(KL Divergence)

KL散度是衡量两个概率分布差异的指标。在VAEs中,KL散度被用来正则化潜在空间,确保潜在表示不会过于稀疏。

重参数化技巧(Reparameterization Trick)

重参数化技巧是VAEs中的一个关键技术,它允许我们通过随机采样来优化潜在表示。这个技巧通过将随机变量的采样过程与网络参数分离,使得梯度下降成为可能。

VAEs的应用

VAEs已经被应用于多种任务,包括图像生成、文本生成和音频生成。它们能够生成高质量的数据,这些数据在视觉上或统计上与训练数据相似。

结语

在本篇博客中,我们探讨了变分自编码器(VAEs)的基本原理、训练方法和应用。VAEs是一种强大的生成式模型,能够学习数据的低维表示并从中生成新的数据点。在下一篇博客中,我们将继续探讨VAEs的变体以及它们在实际应用中的使用。

课件下载地址

https://download.csdn.net/download/u013818406/89922762

相关推荐
serve the people11 小时前
机器学习(ML)和人工智能(AI)技术在WAF安防中的应用
人工智能·机器学习
0***K89211 小时前
前端机器学习
人工智能·机器学习
陈天伟教授11 小时前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
m0_6501082411 小时前
PaLM-E:具身智能的多模态语言模型新范式
论文阅读·人工智能·机器人·具身智能·多模态大语言模型·palm-e·大模型驱动
zandy101111 小时前
2025年11月AI IDE权深度测榜:深度分析不同场景的落地选型攻略
ide·人工智能·ai编程·ai代码·腾讯云ai代码助手
欢喜躲在眉梢里11 小时前
CANN 异构计算架构实操指南:从环境部署到 AI 任务加速全流程
运维·服务器·人工智能·ai·架构·计算
0***R51511 小时前
人工智能在金融风控中的应用
人工智能
2501_9414037612 小时前
人工智能赋能智慧金融互联网应用:智能风控、个性化理财与金融服务优化实践探索》
人工智能
合作小小程序员小小店12 小时前
web网页,在线%抖音,舆情,线性回归%分析系统demo,基于python+web+echart+nlp+线性回归,训练,数据库mysql
python·自然语言处理·回归·nlp·线性回归
youngerwang12 小时前
【字节跳动 AI 原生 IDE TRAE 】
ide·人工智能·trae