《深度学习》Dlib库 CNN卷积神经网络 人脸识别

目录

一、如何实现CNN人脸识别

1、CNN核心概念

1)卷积层

2)池化层

3)激活函数

4)全连接层

2、步骤

1)加载预训练的人脸识别模型

2)读取图像并检测人脸

3)提取人脸特征向量

4)比较相似度

二、案例实现

1、完整代码

运行结果:


一、如何实现CNN人脸识别

1、CNN核心概念

1)卷积层

卷积层是CNN的核心组成部分之一,它通过应用一组卷积核(也称为滤波器)在输入图像上滑动,提取图像的局部特征。每个卷积核会对图像进行卷积操作,得到一个输出特征图。

2)池化层

池化层用于对卷积层输出的特征图进行下采样,减少特征图的尺寸和参数数量。常见的池化操作有最大值池化(Max Pooling)和平均值池化(Average Pooling)。

3)激活函数

在卷积层或全连接层之后,通常使用非线性激活函数来引入非线性关系。常见的激活函数有ReLU函数、Sigmoid函数和Tanh函数等。

4)全连接层

全连接层将前面的卷积层或池化层输出的特征图展平,并与相邻层的所有神经元进行全连接操作。它的作用是将提取到的特征进行分类或回归预测。

2、步骤

1)加载预训练的人脸识别模型

Dlib提供了一个预训练的人脸识别模型,可以在下载并安装Dlib库后找到。

2)读取图像并检测人脸

使用Dlib库提供的人脸检测器来检测输入图像中的人脸,并将每个检测到的人脸提取为一个矩形框。

3)提取人脸特征向量

使用CNN模型对每个检测到的人脸图像进行特征提取,得到一个固定长度的向量表示每个人脸。

4)比较相似度

使用提取的人脸特征向量来比较不同人脸之间的相似度。可以使用欧氏距离或余弦相似度等度量方法来计算相似度分数。

二、案例实现

1、完整代码

python 复制代码
import dlib
import cv2

# opencv可以直接通过retnet来读取神经网络。dlib也可以的。
cnn_face_detector = dlib.cnn_face_detection_model_v1("mmod_human_face_detector.dat")  # 加载预训练的卷积神经网络模型,文件内包含检测人脸所需的权重和配置

img = cv2.imread("people3.png")  # 读取待识别人脸图片

faces = cnn_face_detector(img,1)  # 调用卷积神经网络检测模型对img图像检测人脸,1表示上采样次数为1

for d in faces:  # 遍历识别到的每一个人脸
    # 计算每个人脸的位置
    rect = d.rect   # 获取当前人脸的矩形框对象,返回两个坐标,左上右下
    left = rect.left()  # 左边界x坐标
    top = rect.top()   # 上边界y坐标
    right = rect.right()   # 右边界x
    bottom = rect.bottom()   # 下边界y
    # 绘制人脸对应的矩形框pt1:(left, top)
    cv2.rectangle(img,(left,top),(right,bottom),(0,255,0), 3)
    cv2.imshow("result",img)
k = cv2.waitKey()
cv2.destroyAllWindows()
运行结果:
相关推荐
小喵要摸鱼18 分钟前
【深度学习】超参数调整(Hyperparameter Tuning)
深度学习·超参数调整
这张生成的图像能检测吗36 分钟前
(论文速读)YOLA:学习照明不变特征的低光目标检测
图像处理·人工智能·目标检测·计算机视觉·低照度
ZPC82101 小时前
opencv 获取图像中物体的坐标值
人工智能·python·算法·机器人
亚里随笔1 小时前
AsyPPO_ 轻量级mini-critics如何提升大语言模型推理能力
人工智能·语言模型·自然语言处理·llm·agentic
coding_ksy1 小时前
基于启发式的多模态风险分布越狱攻击,针对多模态大型语言模型(ICCV 2025) - 论文阅读和解析
人工智能·语言模型
Louisejrkf1 小时前
U-net系列算法
深度学习
算家计算1 小时前
5年后手机和APP将成历史?马斯克最新预言背后:端云协同与AI操作系统的未来架构
人工智能·云计算·资讯
多恩Stone2 小时前
【3DV 进阶-5】3D生成中 Inductive Bias (归纳偏置)的技术路线图
人工智能·python·算法·3d·aigc
HaiLang_IT2 小时前
2026 人工智能与大数据专业毕业论文选题方向及题目示例(nlp/自然语言处理/图像处理)
大数据·人工智能·毕业设计选题