背包问题,416. 分割等和子集
-
- 背包问题
- [416. 分割等和子集](#416. 分割等和子集)
背包问题
有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
卡玛网的代码参考
python
n, bagweight = map(int, input().split())
weight = list(map(int, input().split()))
value = list(map(int, input().split()))
dp = [[0] * (bagweight + 1) for _ in range(n)]
for j in range(weight[0], bagweight + 1):
dp[0][j] = value[0]
for i in range(1, n):
for j in range(bagweight + 1):
if j < weight[i]:
dp[i][j] = dp[i - 1][j]
else:
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])
print(dp[n - 1][bagweight])
一维dp 的01背包初始化和遍历顺序更简单,一维dp数组的背包在遍历顺序上和二维不同,使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历。
python
n, bagweight = map(int, input().split())
weight = list(map(int, input().split()))
value = list(map(int, input().split()))
dp = [0] * (bagweight + 1) # 创建一个动态规划数组dp,初始值为0
dp[0] = 0 # 初始化dp[0] = 0,背包容量为0,价值最大为0
for i in range(n): # 应该先遍历物品,如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品
for j in range(bagweight, weight[i]-1, -1): # 倒序遍历背包容量是为了保证物品i只被放入一次
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
print(dp[bagweight])
416. 分割等和子集
给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200
示例 1 :
输入 : [1, 5, 11, 5]
输出 : true
解释: 数组可以分割成 [1, 5, 5] 和 [11].
示例 2 :
输入 : [1, 2, 3, 5]
输出 : false
解释: 数组不能分割成两个元素和相等的子集.
参考代码,重点掌握一维的方法。
python
class Solution:
def canPartition(self, nums: List[int]) -> bool:
_sum = 0
# dp[i]中的i表示背包内总和
# 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
# 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
dp = [0] * 10001
for num in nums:
_sum += num
# 也可以使用内置函数一步求和
# _sum = sum(nums)
if _sum % 2 == 1:
return False
target = _sum // 2
# 开始 0-1背包
for num in nums:
for j in range(target, num - 1, -1): # 每一个元素一定是不可重复放入,所以从大到小遍历
dp[j] = max(dp[j], dp[j - num] + num)
# 集合中的元素正好可以凑成总和target
if dp[target] == target:
return True
return False
简化
python
class Solution:
def canPartition(self, nums: List[int]) -> bool:
if sum(nums) % 2 != 0:
return False
target = sum(nums) // 2
dp = [0] * (target + 1)
for num in nums:
for j in range(target, num-1, -1):
dp[j] = max(dp[j], dp[j-num] + num)
return dp[-1] == target
二维DP
python
class Solution:
def canPartition(self, nums: List[int]) -> bool:
total_sum = sum(nums)
if total_sum % 2 != 0:
return False
target_sum = total_sum // 2
dp = [[False] * (target_sum + 1) for _ in range(len(nums) + 1)]
# 初始化第一行(空子集可以得到和为0)
for i in range(len(nums) + 1):
dp[i][0] = True
for i in range(1, len(nums) + 1):
for j in range(1, target_sum + 1):
if j < nums[i - 1]:
# 当前数字大于目标和时,无法使用该数字
dp[i][j] = dp[i - 1][j]
else:
# 当前数字小于等于目标和时,可以选择使用或不使用该数字
dp[i][j] = dp[i - 1][j] or dp[i - 1][j - nums[i - 1]]
return dp[len(nums)][target_sum]
一维DP
python
class Solution:
def canPartition(self, nums: List[int]) -> bool:
total_sum = sum(nums)
if total_sum % 2 != 0:
return False
target_sum = total_sum // 2
dp = [False] * (target_sum + 1)
dp[0] = True
for num in nums:
# 从target_sum逆序迭代到num,步长为-1
for i in range(target_sum, num - 1, -1):
dp[i] = dp[i] or dp[i - num]
return dp[target_sum]