代码随想录算法训练营第三十九天|背包问题,416. 分割等和子集

背包问题,416. 分割等和子集

    • 背包问题
    • [416. 分割等和子集](#416. 分割等和子集)

背包问题

有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

卡玛网的代码参考

python 复制代码
n, bagweight = map(int, input().split())

weight = list(map(int, input().split()))
value = list(map(int, input().split()))

dp = [[0] * (bagweight + 1) for _ in range(n)]

for j in range(weight[0], bagweight + 1):
    dp[0][j] = value[0]

for i in range(1, n):
    for j in range(bagweight + 1):
        if j < weight[i]:
            dp[i][j] = dp[i - 1][j]
        else:
            dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])

print(dp[n - 1][bagweight])

一维dp 的01背包初始化和遍历顺序更简单,一维dp数组的背包在遍历顺序上和二维不同,使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历。

python 复制代码
n, bagweight = map(int, input().split())
weight = list(map(int, input().split()))
value = list(map(int, input().split()))

dp = [0] * (bagweight + 1)  # 创建一个动态规划数组dp,初始值为0

dp[0] = 0  # 初始化dp[0] = 0,背包容量为0,价值最大为0

for i in range(n):  # 应该先遍历物品,如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品
    for j in range(bagweight, weight[i]-1, -1):  # 倒序遍历背包容量是为了保证物品i只被放入一次
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i])

print(dp[bagweight])

416. 分割等和子集

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200

示例 1 :
输入 : [1, 5, 11, 5]
输出 : true
解释: 数组可以分割成 [1, 5, 5] 和 [11].

示例 2 :
输入 : [1, 2, 3, 5]
输出 : false
解释: 数组不能分割成两个元素和相等的子集.

参考代码,重点掌握一维的方法。

python 复制代码
class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        _sum = 0

        # dp[i]中的i表示背包内总和
        # 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
        # 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
        dp = [0] * 10001
        for num in nums:
            _sum += num
        # 也可以使用内置函数一步求和
        # _sum = sum(nums)
        if _sum % 2 == 1:
            return False
        target = _sum // 2

        # 开始 0-1背包
        for num in nums:
            for j in range(target, num - 1, -1):  # 每一个元素一定是不可重复放入,所以从大到小遍历
                dp[j] = max(dp[j], dp[j - num] + num)

        # 集合中的元素正好可以凑成总和target
        if dp[target] == target:
            return True
        return False

简化

python 复制代码
class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        if sum(nums) % 2 != 0:
            return False
        target = sum(nums) // 2
        dp = [0] * (target + 1)
        for num in nums:
            for j in range(target, num-1, -1):
                dp[j] = max(dp[j], dp[j-num] + num)
        return dp[-1] == target

二维DP

python 复制代码
class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        
        total_sum = sum(nums)

        if total_sum % 2 != 0:
            return False

        target_sum = total_sum // 2
        dp = [[False] * (target_sum + 1) for _ in range(len(nums) + 1)]

        # 初始化第一行(空子集可以得到和为0)
        for i in range(len(nums) + 1):
            dp[i][0] = True

        for i in range(1, len(nums) + 1):
            for j in range(1, target_sum + 1):
                if j < nums[i - 1]:
                    # 当前数字大于目标和时,无法使用该数字
                    dp[i][j] = dp[i - 1][j]
                else:
                    # 当前数字小于等于目标和时,可以选择使用或不使用该数字
                    dp[i][j] = dp[i - 1][j] or dp[i - 1][j - nums[i - 1]]

        return dp[len(nums)][target_sum]

一维DP

python 复制代码
class Solution:
    def canPartition(self, nums: List[int]) -> bool:

        total_sum = sum(nums)

        if total_sum % 2 != 0:
            return False

        target_sum = total_sum // 2
        dp = [False] * (target_sum + 1)
        dp[0] = True

        for num in nums:
            # 从target_sum逆序迭代到num,步长为-1
            for i in range(target_sum, num - 1, -1):
                dp[i] = dp[i] or dp[i - num]
        return dp[target_sum]
相关推荐
徐子童1 分钟前
优选算法---字符串
java·算法·字符串·笔试·高精度相乘
西瓜啵啵奶茶2 分钟前
LeetCode 热题 100 : 普通数组
算法
jikiecui9 分钟前
信奥崔老师:C++ 程序设计入门
算法
Q741_14717 分钟前
C++ 位运算 高频面试考点 力扣 面试题 17.19. 消失的两个数字 题解 每日一题
c++·算法·leetcode·面试·位运算
Jacob000019 分钟前
[Decision Tree] H(D) & IG & IGR
算法·面试
love530love23 分钟前
【笔记】 Podman Desktop 中部署 Stable Diffusion WebUI (GPU 支持)
人工智能·windows·笔记·python·容器·stable diffusion·podman
vadvascascass28 分钟前
平滑加权轮询负载均衡的底层逻辑
java·算法·负载均衡
CoovallyAIHub39 分钟前
Transformer作者开源进化计算新框架,样本效率暴增数十倍!
深度学习·算法·计算机视觉
程序员晚枫42 分钟前
Python 3.14正式发布!这5大新特性太炸裂了
python
先做个垃圾出来………1 小时前
SortedList
python