PyTorch 保存和加载模型状态和优化器状态

以下示例代码展示了如何在 PyTorch 中保存和加载模型状态和优化器状态,以便训练中断后可以继续训练。

1. 保存模型和优化器状态

假设模型训练了一段时间后,我们想要保存模型和优化器的状态,确保下次可以从同一位置继续训练。

2. 加载模型和优化器状态

加载保存的状态后,可以从保存的 epoch 继续训练。

示例代码

import torch
import torch.nn as nn
import torch.optim as optim

# 假设我们定义了一个简单的模型
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc = nn.Linear(10, 2)

    def forward(self, x):
        return self.fc(x)

# 创建模型和优化器
model = SimpleModel()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 模拟的训练代码片段
num_epochs = 20
checkpoint_path = "model_checkpoint.pth"

# 保存模型和优化器状态
def save_checkpoint(epoch, model, optimizer, path):
    torch.save({
        'epoch': epoch,
        'model_state_dict': model.state_dict(),
        'optimizer_state_dict': optimizer.state_dict()
    }, path)
    print(f"Checkpoint saved at epoch {epoch}.")

# 加载模型和优化器状态
def load_checkpoint(model, optimizer, path):
    checkpoint = torch.load(path)
    model.load_state_dict(checkpoint['model_state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    start_epoch = checkpoint['epoch']
    print(f"Checkpoint loaded, starting at epoch {start_epoch}.")
    return start_epoch

# 尝试加载已保存的检查点
try:
    start_epoch = load_checkpoint(model, optimizer, checkpoint_path)
except FileNotFoundError:
    start_epoch = 0
    print("No checkpoint found, starting training from scratch.")

# 继续训练
for epoch in range(start_epoch, num_epochs):
    # 模拟训练步骤
    # output = model(input) ...
    # loss = loss_fn(output, target) ...
    # optimizer.zero_grad()
    # loss.backward()
    # optimizer.step()

    print(f"Epoch {epoch+1}/{num_epochs} completed.")

    # 每 5 个 epoch 保存一次模型状态
    if (epoch + 1) % 5 == 0:
        save_checkpoint(epoch + 1, model, optimizer, checkpoint_path)

解释

  1. 保存save_checkpoint 函数会在指定的 epoch 保存模型和优化器状态。
  2. 加载load_checkpoint 函数会加载模型和优化器状态,并返回上次的 epoch,以便继续训练。
  3. 训练控制start_epoch 变量控制了是否继续从之前的检查点继续训练,确保模型在中断后可以接着训练。
相关推荐
ZHOU_WUYI23 分钟前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长1 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME2 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室2 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself2 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董3 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee3 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa3 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai
四口鲸鱼爱吃盐3 小时前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类
蓝天星空3 小时前
Python调用open ai接口
人工智能·python