PyTorch 保存和加载模型状态和优化器状态

以下示例代码展示了如何在 PyTorch 中保存和加载模型状态和优化器状态,以便训练中断后可以继续训练。

1. 保存模型和优化器状态

假设模型训练了一段时间后,我们想要保存模型和优化器的状态,确保下次可以从同一位置继续训练。

2. 加载模型和优化器状态

加载保存的状态后,可以从保存的 epoch 继续训练。

示例代码

复制代码
import torch
import torch.nn as nn
import torch.optim as optim

# 假设我们定义了一个简单的模型
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc = nn.Linear(10, 2)

    def forward(self, x):
        return self.fc(x)

# 创建模型和优化器
model = SimpleModel()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 模拟的训练代码片段
num_epochs = 20
checkpoint_path = "model_checkpoint.pth"

# 保存模型和优化器状态
def save_checkpoint(epoch, model, optimizer, path):
    torch.save({
        'epoch': epoch,
        'model_state_dict': model.state_dict(),
        'optimizer_state_dict': optimizer.state_dict()
    }, path)
    print(f"Checkpoint saved at epoch {epoch}.")

# 加载模型和优化器状态
def load_checkpoint(model, optimizer, path):
    checkpoint = torch.load(path)
    model.load_state_dict(checkpoint['model_state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    start_epoch = checkpoint['epoch']
    print(f"Checkpoint loaded, starting at epoch {start_epoch}.")
    return start_epoch

# 尝试加载已保存的检查点
try:
    start_epoch = load_checkpoint(model, optimizer, checkpoint_path)
except FileNotFoundError:
    start_epoch = 0
    print("No checkpoint found, starting training from scratch.")

# 继续训练
for epoch in range(start_epoch, num_epochs):
    # 模拟训练步骤
    # output = model(input) ...
    # loss = loss_fn(output, target) ...
    # optimizer.zero_grad()
    # loss.backward()
    # optimizer.step()

    print(f"Epoch {epoch+1}/{num_epochs} completed.")

    # 每 5 个 epoch 保存一次模型状态
    if (epoch + 1) % 5 == 0:
        save_checkpoint(epoch + 1, model, optimizer, checkpoint_path)

解释

  1. 保存save_checkpoint 函数会在指定的 epoch 保存模型和优化器状态。
  2. 加载load_checkpoint 函数会加载模型和优化器状态,并返回上次的 epoch,以便继续训练。
  3. 训练控制start_epoch 变量控制了是否继续从之前的检查点继续训练,确保模型在中断后可以接着训练。
相关推荐
制冷男孩4 分钟前
机器学习算法-聚类K-Means
算法·机器学习·聚类
yingxiao88811 分钟前
OpenAI与微软洽谈新融资及IPO,Instagram因TikTok流失四成用户
人工智能·microsoft
熊猫在哪18 分钟前
野火鲁班猫(arrch64架构debian)从零实现用MobileFaceNet算法进行实时人脸识别(三)用yolov5-face算法实现人脸检测
人工智能·python·嵌入式硬件·神经网络·yolo·目标检测·机器学习
十步杀一人_千里不留行23 分钟前
AI无法解决的Bug系列(一)跨时区日期过滤问题
人工智能·bug
2401_8786247935 分钟前
机器学习 KNN算法
人工智能·算法·机器学习
小oo呆41 分钟前
【自然语言处理与大模型】向量数据库:Milvus使用指南
人工智能·自然语言处理·milvus
Cachel wood44 分钟前
算法与数据结构:质数、互质判定和裴蜀定理
数据结构·算法·microsoft·机器学习·数据挖掘·langchain
豆豆44 分钟前
机器学习 day05
人工智能·机器学习
扫地僧9851 小时前
基于大模型微调的智能医疗诊断协助系统(LLM,RAG,Agent)
人工智能·llm·agent·arg
开利网络1 小时前
产业互联网+三融战略:重构企业增长密码
大数据·运维·服务器·人工智能·重构·1024程序员节