论文略读Fewer Truncations Improve Language Modeling

ICML 2024

1 背景

  • 在传统LLM训练过程中,为了提高效率,通常会将多个输入文档拼接在一起,然后将这些拼接的文档分割成固定长度的序列。
    • ------>会造成一个重大问题------文档截断(document truncation),损害了数据完整性(data integrity)
    • 此外,文档截断减少了每个序列中的上下文量,可能导致下一个词的预测与上文不相关,从而使模型更容易产生幻觉 (hallucination)。
      • (a):将变量定义与使用分割到不同的训练序列
        • ------>使得模型学习到错误的模式,并可能在下游任务中产生幻觉。
      • (b):摘要中的"Monday morning"无法与训练序列中的任何上下文匹配,导致内容失实
        • ------>显著降低模型对上下文信息的敏感度,导致生成的内容与实际情况不符,即所谓的不忠实生成 (unfaithful generation)。
      • (c):阻碍训练期间的知识获取,因为知识在文本中的表现形式通常依赖完整的句子或段落
  • ------>论文提出了最佳适配打包 (Best-fit Packing)
    • 使用长度感知的组合优化技术,有效地将文档打包到训练序列中,从而完全消除不必要的截断。
    • 不仅保持了传统方法的训练效率,而且通过减少数据的片段化,实质性地提高了模型训练的质量
相关推荐
普if加的帕1 小时前
java Springboot使用扣子Coze实现实时音频对话智能客服
java·开发语言·人工智能·spring boot·实时音视频·智能客服
KoiC1 小时前
Dify接入RAGFlow无返回结果
人工智能·ai应用
lilye662 小时前
精益数据分析(20/126):解析经典数据分析框架,助力创业增长
大数据·人工智能·数据分析
盈达科技2 小时前
盈达科技:登顶GEO优化全球制高点,以AICC定义AI时代内容智能优化新标杆
大数据·人工智能
安冬的码畜日常2 小时前
【AI 加持下的 Python 编程实战 2_10】DIY 拓展:从扫雷小游戏开发再探问题分解与 AI 代码调试能力(中)
开发语言·前端·人工智能·ai·扫雷游戏·ai辅助编程·辅助编程
古希腊掌管学习的神2 小时前
[LangGraph教程]LangGraph04——支持人机协作的聊天机器人
人工智能·语言模型·chatgpt·机器人·agent
FIT2CLOUD飞致云2 小时前
问答页面支持拖拽和复制粘贴文件,MaxKB企业级AI助手v1.10.6 LTS版本发布
人工智能·开源
起个破名想半天了2 小时前
计算机视觉cv入门之答题卡自动批阅
人工智能·opencv·计算机视觉
早睡早起吧2 小时前
目标检测篇---Fast R-CNN
人工智能·目标检测·计算机视觉·cnn
爱喝奶茶的企鹅3 小时前
Ethan独立开发产品日报 | 2025-04-24
人工智能·程序员·开源