论文略读Fewer Truncations Improve Language Modeling

ICML 2024

1 背景

  • 在传统LLM训练过程中,为了提高效率,通常会将多个输入文档拼接在一起,然后将这些拼接的文档分割成固定长度的序列。
    • ------>会造成一个重大问题------文档截断(document truncation),损害了数据完整性(data integrity)
    • 此外,文档截断减少了每个序列中的上下文量,可能导致下一个词的预测与上文不相关,从而使模型更容易产生幻觉 (hallucination)。
      • (a):将变量定义与使用分割到不同的训练序列
        • ------>使得模型学习到错误的模式,并可能在下游任务中产生幻觉。
      • (b):摘要中的"Monday morning"无法与训练序列中的任何上下文匹配,导致内容失实
        • ------>显著降低模型对上下文信息的敏感度,导致生成的内容与实际情况不符,即所谓的不忠实生成 (unfaithful generation)。
      • (c):阻碍训练期间的知识获取,因为知识在文本中的表现形式通常依赖完整的句子或段落
  • ------>论文提出了最佳适配打包 (Best-fit Packing)
    • 使用长度感知的组合优化技术,有效地将文档打包到训练序列中,从而完全消除不必要的截断。
    • 不仅保持了传统方法的训练效率,而且通过减少数据的片段化,实质性地提高了模型训练的质量
相关推荐
那个村的李富贵8 小时前
光影魔术师:CANN加速实时图像风格迁移,让每张照片秒变大师画作
人工智能·aigc·cann
腾讯云开发者9 小时前
“痛点”到“通点”!一份让 AI 真正落地产生真金白银的实战指南
人工智能
CareyWYR9 小时前
每周AI论文速递(260202-260206)
人工智能
hopsky10 小时前
大模型生成PPT的技术原理
人工智能
禁默11 小时前
打通 AI 与信号处理的“任督二脉”:Ascend SIP Boost 加速库深度实战
人工智能·信号处理·cann
心疼你的一切11 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
AI绘画哇哒哒11 小时前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
数据分析能量站11 小时前
Clawdbot(现名Moltbot)-现状分析
人工智能
那个村的李富贵11 小时前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
二十雨辰11 小时前
[python]-AI大模型
开发语言·人工智能·python