R_机器学习——常用语法技巧汇总

1.[ , ]搜索妙用

在R语言中,当你使用双括号[ , ]来索引数据框(data frame)或矩阵(matrix)时,第一个位置是用来指定行的索引或名称,第二个位置是用来指定列的索引、名称或逻辑条件。

  • 第一个位置(即,前面的部分)用于指定你想要选择的行。你可以通过行的索引(数字)或行的名称(如果是字符型的话)来指定。

  • 第二个位置(即,后面的部分)用于指定你想要选择的列。同样地,你可以通过列的索引、列的名称或一个逻辑向量来指定。

例如,假设你有一个名为df的数据框,它包含几行和几列数据。如果你想选择第3行和第2列的数据,你可以这样做:

|---|------------|
| | df[3, 2] |

或者,如果数据框的行有名称(比如"row1", "row2", ...),列也有名称(比如"col1", "col2", ...),你可以使用这些名称来索引:

|---|----------------------|
| | df["row3", "col2"] |

如:

|---|--------------------------------------------------------------------|
| | tree_gini$cptable[which.min(tree_gini$cptable[,"xerror"]), "CP"] |

  • which.min(tree_gini$cptable[,"xerror"]) 这部分代码计算xerror列中最小值的位置(行索引)。
  • 然后,这个行索引被用在外部的双括号索引中,与列名"CP"一起,来选择cptable中对应行的CP值。

所以,在这个特定的例子中,第一个位置是指定行的索引(通过which.min()函数找到),第二个位置是指定列的名称("CP")。

2.()输出妙用

在R语言中,使用()进行输出妙用通常指的是在控制台中立即打印或显示某个对象或表达式的结果。

如果你有一个变量x,并且想要立即在控制台中查看它的值,你可以简单地在它后面加上()(尽管对于单个变量这通常不是必需的,因为直接输入变量名也会显示其值)。但是,这种用法在结合其他函数或表达式时很有用。

|---|--------------------|
| | x <- 42 |
| | (x) # 输出: [1] 42 |

R 复制代码
(confusion_matrix <- confusionMatrix(prediction, factor(test$y)))

3.其它常用技巧(精简版)

names()

设置或获取对象名称

|---|--------------------------------------------------------|
| | names(df) # 获取df数据框的所有列名 |
| | names(df) <- c("new_col1", "new_col2", ...) # 设置新的列名 |

cbind()rbind()

合并数据框或矩阵

|---|--------------------------------------------|
| | new_df <- cbind(df1, df2) # 按列合并df1和df2 |
| | new_df <- rbind(df1, df2) # 按行合并df1和df2 |

subset()

根据条件选择数据框的子集

|---|------------------------------------------------------------|
| | subset_df <- subset(df, col1 > 10 & col2 < 5) # 选择满足条件的行 |

with()

在数据框的上下文中执行表达式

|---|-------------------------------------------------------|
| | with(df, sum(col1 * col2)) # 计算df中col1和col2的逐元素乘积之和 |

apply()

对数据框或矩阵的行或列应用函数

|---|----------------------------------------|
| | apply(df, 1, sum) # 对df的每一行应用sum函数 |
| | apply(df, 2, mean) # 对df的每一列应用mean函数 |


++to be continued!!!++

相关推荐
Jay20021111 小时前
【机器学习】23-25 决策树 & 树集成
算法·决策树·机器学习
dragoooon341 小时前
[优选算法专题九.链表 ——NO.53~54合并 K 个升序链表、 K 个一组翻转链表]
数据结构·算法·链表
海边夕阳20067 小时前
【每天一个AI小知识】:什么是生成对抗网络?
人工智能·经验分享·深度学习·神经网络·机器学习·生成对抗网络
xlq223227 小时前
22.多态(上)
开发语言·c++·算法
666HZ6667 小时前
C语言——高精度加法
c语言·开发语言·算法
Wise玩转AI7 小时前
Day 27|智能体的 UI 与用户交互层
人工智能·python·ui·ai·chatgpt·ai智能体
sweet丶7 小时前
iOS MMKV原理整理总结:比UserDefaults快100倍的存储方案是如何炼成的?
算法·架构
youcans_7 小时前
【youcans论文精读】VM-UNet:面向医学图像分割的视觉 Mamba UNet 架构
论文阅读·人工智能·计算机视觉·图像分割·状态空间模型
铮铭7 小时前
扩散模型简介:The Annotated Diffusion Model
人工智能·机器人·强化学习·世界模型