如何用mmclassification训练多标签多分类数据

这里使用的源码版本是 mmclassification-0.25.0

训练数据标签文件格式如下,每行的空格前面是路径(图像文件所在的绝对路径),后面是标签名,因为特殊要求这里我的每张图像都记录了三个标签每个标签用","分开(具体看自己的需求),我的训练标签数量是17个。

训练参数配置文件,用ResNet作为特征提取主干,多标签分类要使用MultiLabelLinearClsHead作为分类头。数据集的格式使用CustomDataset,并修改该结构的定义文件,后面有详细内容。

python 复制代码
# checkpoint saving
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=100,
    hooks=[
        dict(type='TextLoggerHook'),
        # dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
optimizer = dict(lr=0.1, momentum=0.9, type='SGD', weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
runner = dict(max_epochs=100, type='EpochBasedRunner')
lr_config = dict(
    policy='step', step=[
        30,
        60,
        90,
    ])

model = dict(
    type='ImageClassifier',
    backbone=dict(type='ResNet',depth=18,num_stages=4,out_indices=(3, ),style='pytorch'), 
    neck=dict(type='GlobalAveragePooling'),
    head=dict(
        type='MultiLabelLinearClsHead',
        num_classes=17,
        in_channels=512,
    ))

dataset_type = 'CustomDataset'          #'MultiLabelDataset'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='RandomResizedCrop', size=224),
    dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='ToTensor', keys=['gt_label']),
    dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='Resize', size=(256, -1)),
    dict(type='CenterCrop', crop_size=224),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='Collect', keys=['img'])
]

data = dict(
    samples_per_gpu=32,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        data_prefix='rootpath/images',
        ann_file='rootpath/train.txt',
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        data_prefix='rootpath/images',
        ann_file='rootpath/val.txt',
        pipeline=test_pipeline),
    test=dict(
        type=dataset_type,
        data_prefix='rootpath/images',
        ann_file='rootpath/test.txt',
        pipeline=test_pipeline))

evaluation = dict(interval=1, metric='accuracy')

其他需要修改的地方:

1、修改加载数据的格式,将./mmclassification-0.25.0/mmcls/datasets/custom.py的CustomDataset里面的load_annotations函数替换成下面的函数:

python 复制代码
    ###修改成多标签分类数据加载方式###
    def load_annotations(self):
            """Load image paths and gt_labels."""
            if self.ann_file is None:
                samples = self._find_samples()
            elif isinstance(self.ann_file, str):
                lines = mmcv.list_from_file(
                    self.ann_file, file_client_args=self.file_client_args)
                samples = [x.strip().rsplit(' ', 1) for x in lines]
            else:
                raise TypeError('ann_file must be a str or None')

            data_infos = []
            for filename, gt_label in samples:
                info = {'img_prefix': self.data_prefix}
                info['img_info'] = {'filename': filename.strip()}
                temp_label = np.zeros(len(self.CLASSES))
                # if not self.multi_label:
                #     info['gt_label'] = np.array(gt_label, dtype=np.int64)
                # else:
                ### multi-label classify
                if len(gt_label) == 1:
                    temp_label[np.array(gt_label, dtype=np.int64)] = 1
                    info['gt_label'] = temp_label
                else:
                    for label in gt_label.split(','):
                        i = self.CLASSES.index(label)
                        temp_label[np.array(i, dtype=np.int64)] = 1
                    # for i in range(np.array(gt_label.split(','), dtype=np.int64).shape[0]):
                    #     temp_label[np.array(gt_label.split(','), dtype=np.int64)[i]] = 1
                    info['gt_label'] = temp_label
                # print(info)
                data_infos.append(info)
            return data_infos

记得在初始函数__init__里修改成自己要训练的类别:

2、修改评估数据的函数,将./mmclassification-0.25.0/mmcls/models/losses/accuracy.py里面的accuracy_torch函数替换成如下函数。我这里只是增加了一些度量函数,方便可视化多标签的指标情况,并没有更新其他地方,训练时还是会验证原来的指标,里面调用的Metric类可以参考这篇文章:https://blog.csdn.net/u013250861/article/details/122727704

python 复制代码
def accuracy_torch(pred, target, topk=(1,), thrs=0.):
    if isinstance(thrs, Number):
        thrs = (thrs,)
        res_single = True
    elif isinstance(thrs, tuple):
        res_single = False
    else:
        raise TypeError(f'thrs should be a number or tuple, but got {type(thrs)}.')

    res = []
    maxk = max(topk)
    num = pred.size(0)
    pred = pred.float()
    
    #### ysn修改,增加对多标签分类的度量函数 ###
    pred_ = (pred > 0.5).float()        # 将 pred 中大于0.5的元素替换为1,其余替换为0

    # print("pred shape:", pred.shape, "pred:", pred)
    # # print("pred_ shape:", pred_.shape, "pred_:", pred_)
    # # print("target shape", target.shape, "target:", target)
    from mmcls.utils import get_root_logger
    logger = get_root_logger()
    
    from sklearn.metrics import classification_report
    class_report = classification_report(target.numpy(), pred_.numpy(), target_names=["这里可以写成你的训练类型列表,也可以不使用这个参数"])     #分类报告汇总了精确率、召回率和 F1 分数等指标
    logger.info("\nClassification Report:\n{}".format(class_report))

    myMetic = Metric(pred_.numpy(), target.numpy())
    ham = myMetic.hamming_distance()
    avgPrecision, _ = myMetic.avgPrecision()
    avgRecall, _, _  = myMetic.avgRecall()
    ranking_loss = myMetic.get_ranking_loss()
    accuracy_multiclass = myMetic.accuracy_multiclass()
    logger.info("\nHam:{}\tAvgPrecision:{}\tAvgRecall:{}\tRanking_loss:{}\tAccuracy_Multilabel:{}".format(ham, avgPrecision, avgRecall, ranking_loss, accuracy_multiclass))

    ####原来的代码###
    pred_score, pred_label = pred.topk(maxk, dim=1)
    pred_label = pred_label.t()

    target = target.argmax(dim=1)     ### ysn修改,这里是多标签分类标签列表的格式,单标签分类去掉这一句 ###

    correct = pred_label.eq(target.view(1, -1).expand_as(pred_label))
    for k in topk:
        res_thr = []
        for thr in thrs:
            # Only prediction values larger than thr are counted as correct
            _correct = correct & (pred_score.t() > thr)
            correct_k = _correct[:k].reshape(-1).float().sum(0, keepdim=True)
            res_thr.append((correct_k.mul_(100. / num)))
        if res_single:
            res.append(res_thr[0])
        else:
            res.append(res_thr)
    return res

3、修改推理部分,将./mmclassification-0.25.0/mmcls/apis/inference.py里面的inference_model函数修改如下,推理多标签时候可以指定输出所有得分阈值大于0.5的所有标签类型。

python 复制代码
def inference_model(model, img):
    """Inference image(s) with the classifier.

    Args:
        model (nn.Module): The loaded classifier.
        img (str/ndarray): The image filename or loaded image.

    Returns:
        result (dict): The classification results that contains
            `class_name`, `pred_label` and `pred_score`.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    if isinstance(img, str):
        if cfg.data.test.pipeline[0]['type'] != 'LoadImageFromFile':
            cfg.data.test.pipeline.insert(0, dict(type='LoadImageFromFile'))
        data = dict(img_info=dict(filename=img), img_prefix=None)
    else:
        if cfg.data.test.pipeline[0]['type'] == 'LoadImageFromFile':
            cfg.data.test.pipeline.pop(0)
        data = dict(img=img)
    test_pipeline = Compose(cfg.data.test.pipeline)
    data = test_pipeline(data)
    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device])[0]

    # forward the model
    # with torch.no_grad():
    #     scores = model(return_loss=False, **data)
    #     pred_score = np.max(scores, axis=1)[0]
    #     pred_label = np.argmax(scores, axis=1)[0]
    #     result = {'pred_label': pred_label, 'pred_score': float(pred_score)}
    # result['pred_class'] = model.CLASSES[result['pred_label']]
    # return result

    ## ysn修改 ##
    with torch.no_grad():
        scores = model(return_loss=False, **data)
        # print(scores, type(scores), len(scores), len(model.CLASSES))
    result = {'pred_label':[], 'pred_score': [], 'pred_class':[]}
    for i in range(len(scores[0])):
        if scores[0][i]>0.5:
            result['pred_label'].append(int(i))
            result['pred_score'].append(float(scores[0][i]))
            result['pred_class'].append(model.CLASSES[int(i)])
        else:
            continue
    return result

或者直接使用以下推理脚本:

python 复制代码
# Copyright (c) OpenMMLab. All rights reserved.
from argparse import ArgumentParser
import warnings
import os
import mmcv
import torch
import numpy as np
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint
from mmcls.datasets.pipelines import Compose
from mmcls.models import build_classifier


def init_model(config, checkpoint=None, device='cuda:0', options=None):
    """Initialize a classifier from config file.

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.
        options (dict): Options to override some settings in the used config.

    Returns:
        nn.Module: The constructed classifier.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    if options is not None:
        config.merge_from_dict(options)
    config.model.pretrained = None
    model = build_classifier(config.model)
    if checkpoint is not None:
        # Mapping the weights to GPU may cause unexpected video memory leak
        # which refers to https://github.com/open-mmlab/mmdetection/pull/6405
        checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
        if 'CLASSES' in checkpoint.get('meta', {}):
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            from mmcls.datasets import ImageNet
            warnings.simplefilter('once')
            warnings.warn('Class names are not saved in the checkpoint\'s '
                          'meta data, use imagenet by default.')
            model.CLASSES = ImageNet.CLASSES
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model


def inference_model(model, img, threshold=0.5):
    """Inference image(s) with the classifier.

    Args:
        model (nn.Module): The loaded classifier.
        img (str/ndarray): The image filename or loaded image.

    Returns:
        result (dict): The classification results that contains
            `class_name`, `pred_label` and `pred_score`.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    if isinstance(img, str):
        if cfg.data.test.pipeline[0]['type'] != 'LoadImageFromFile':
            cfg.data.test.pipeline.insert(0, dict(type='LoadImageFromFile'))
        data = dict(img_info=dict(filename=img), img_prefix=None)
    else:
        if cfg.data.test.pipeline[0]['type'] == 'LoadImageFromFile':
            cfg.data.test.pipeline.pop(0)
        data = dict(img=img)
    test_pipeline = Compose(cfg.data.test.pipeline)
    data = test_pipeline(data)
    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device])[0]

    ### 原始代码 ###
    # forward the model
    # with torch.no_grad():
    #     scores = model(return_loss=False, **data)
    #     pred_score = np.max(scores, axis=1)[0]
    #     pred_label = np.argmax(scores, axis=1)[0]
    #     result = {'pred_label': pred_label, 'pred_score': float(pred_score)}
    # result['pred_class'] = model.CLASSES[result['pred_label']]
    # return result

    ### ysn修改 ###
    with torch.no_grad():
        scores = model(return_loss=False, **data)
        # print(scores, type(scores), len(scores), len(model.CLASSES))
    result = {'pred_label':[], 'pred_score': [], 'pred_class':[]}
    for i in range(len(scores[0])):
        if scores[0][i] > threshold:
            result['pred_label'].append(int(i))
            result['pred_score'].append(round(float(scores[0][i]), 4))
            result['pred_class'].append(model.CLASSES[int(i)])
        else:
            continue
    return result


def show_result(img, result, out_file):
    import matplotlib.pyplot as plt
    plt.imshow(img)
    plt.title(f'{result["pred_class"]}: {result["pred_score"]}')
    plt.axis('off')
    if out_file is not None:
        plt.savefig(out_file)
    plt.show()


def save_result(imgpath, result, outfile="result.txt"):
    # print(result['pred_label'], result['pred_class'], result['pred_score'])
    with open(outfile, "a+") as f:
        f.write(imgpath + "\t" + ",".join(result["pred_class"]) + "\n")
    f.close()

def main():
    parser = ArgumentParser()
    parser.add_argument('--imgpath', default="./images", help='Image file')
    parser.add_argument('--img', default=None, help='Image file')
    parser.add_argument('--outpath', default="./res", help='Image file')
    parser.add_argument('--config', default="config.py",  help='Config file')
    parser.add_argument('--checkpoint', default="./epoch_100.pth",  help='Checkpoint file')
    parser.add_argument('--device', default='cuda:0', help='Device used for inference')
    args = parser.parse_args()

    if not os.path.exists(args.outpath):
        os.mkdir(args.outpath)

    model = init_model(args.config, args.checkpoint, device=args.device)

    if args.img is None and os.path.exists(args.imgpath):
        for imgname in os.listdir(args.imgpath):
            img_path = os.path.join(args.imgpath, imgname)
            img = mmcv.imread(img_path)
            if img is None:
                continue
            result = inference_model(model, img, threshold=0.5)
            print("img_path: ", img_path, result)
            save_result(img_path, result, outfile=os.path.join(args.outpath, "result.txt"))
            show_result(img, result, out_file=os.path.join(args.outpath, imgname.replace('.jpg', '_res.jpg')))

    elif args.img is not None and os.path.exists(args.img):
        result = inference_model(model, args.img, threshold=0.5)
        # print(result['pred_label'], result['pred_class'], result['pred_score'])
    else:
        raise Exception('No such file or directory: {}'.format(args.img))



if __name__ == '__main__':
    main()

通过以上修改,可以成功训练、评估、推理多标签分类训练了。

由于我没有找到mmcls官方的训练多标签的训练教程,因此做了上述修改。如果有其他更方便有效的多标签多分类方法或者项目,欢迎在该文章下面留言,非常感谢。

参考文章

https://blog.csdn.net/litt1e/article/details/125316552

https://blog.csdn.net/u013250861/article/details/122727704

相关推荐
微凉的衣柜3 分钟前
在 PyTorch 中进行推理时,为什么 `model.eval()` 和 `torch.no_grad()` 需要同时使用?
人工智能·pytorch·python
大G哥7 分钟前
深度学习 | 什么是知识图谱
人工智能·深度学习·知识图谱
int WINGsssss8 分钟前
使用系统内NCCL环境重新编译Pytorch
人工智能·pytorch·python
孤单网愈云9 分钟前
11.25Pytorch_手动构建模型实战
人工智能·pytorch·python
相识已是上上签9 分钟前
YOLOv8模型pytorch格式转为onnx格式
人工智能·pytorch·yolo
冉佳驹10 分钟前
数据结构 ——— 快速排序的时间复杂度以及规避最坏情况的方法
c语言·数据结构·算法·排序算法·快速排序算法·三数取中
徐浪老师1 小时前
C语言实现冒泡排序:从基础到优化全解析
c语言·算法·排序算法
hr_net1 小时前
图论入门编程
算法·图论
李小白661 小时前
各种排序算法
数据结构·算法·排序算法
ZXF_H1 小时前
pip安装github上的开源软件包
git·python·github·pip