深度学习模型量化原理

深度学习模型量化原理

深度学习模型的量化Quantization)是一种优化技术,它通过减少模型中权重和激活值的精度来减小模型大小和提高推理速度,同时尽量保持模型的准确度。

模型在训练时,一般是以标准的float32类型(fp32)进行运算的,即使用32个bit来表示一个浮点数并进行浮点数运算。但是在边缘计算设备上进行推理时,处理器往往没有那么高的算力支持fp32的运算。此时,我们常常将模型量化为int8类型减小模型大小加快推理速度

对称量化与非对称量化

int8量化分为对称量化(Symmetric Quantization)与非对称量化(Asymmetric Quantization),通常对称量化的性能会优于非对称量化, 而精度上非对称量化更优。

非对称量化

如图所示,非对称量化就是把数值缩放到[-128,127](int8)或者[0,255](uint8)之间,量化公式如下:
r = S ( q + Z ) q = i n t ( r S ) − Z S = max − min qmax − qmin Z = R o u n d ( − min S + qmin ) r=S(q+Z) \quad q=int(\frac{r}{S})-Z \\ S=\frac{\text{max}-\text{min}}{\text{qmax}-\text{qmin}} \\ Z=Round(-\frac{\text{min}}{S}+\text{qmin}) r=S(q+Z)q=int(Sr)−ZS=qmax−qminmax−minZ=Round(−Smin+qmin)

其中, Z Z Z是zeropoint, S S S是scale, q q q是量化后的值, r r r是真实的值; min / max \text{min}/\text{max} min/max是原始值的范围, qmin / qmax \text{qmin}/\text{qmax} qmin/qmax是量化后值的范围。

非对称量化的优点是能够更灵活地表示数据范围,特别是当数据分布不是以零为中心对称时。然而,非对称量化的缺点是执行量化和反量化操作可能需要更多的计算

对称量化

对称量化是当 Z = 0 Z=0 Z=0时非对称量化的特例。
r = S q q = i n t ( r S ) r=Sq \quad q=int(\frac{r}{S}) r=Sqq=int(Sr)

这种方法比非对称量化更简单,容易在硬件上实现,并且对称量化可以减少量化和反量化过程中的计算量,因为它不需要像非对称量化那样处理零点偏移。

对称量化假设数据分布是对称的,但在实际应用中,很多数据分布并不是对称的,这限制了对称量化的应用场景。

校准

当我们对激活值进行非对称量化时,需要知道值的动态范围(最小值、最大值),但是模型训练后一般是不会保存这些信息的,所以在量化阶段我们仍然需要一个比较小的训练集(一般从模型的训练集中抽取100-200张各个类型的数据)来进行校准Calibration)。

校准就是收集输入数据在模型各层的输出值,并统计得到动态范围。除此以外,TensorRT等方法还使用了KLD方法(基于KL散度)来获取量化门限,这种方法不是直接将 [ m i n , m a x ] [min,max] [min,max]映射到 [ − 127 , 127 ] [-127,127] [−127,127],而是寻找一个阈值,将阈值以外极值附近的点直接映射为最大/最小值。

参考文献:

个阈值,将阈值以外极值附近的点直接映射为最大/最小值。

参考文献:

A Survey of Quantization Methods for Efficient Neural Network Inference

相关推荐
森诺Alyson16 小时前
前沿技术借鉴研讨-2026.1.29(时间序列预测)
论文阅读·人工智能·经验分享·深度学习·论文笔记
国科安芯16 小时前
航空级PMSM驱动系统中MCU的故障诊断与容错控制策略研究
单片机·嵌入式硬件·安全·架构·制造·安全性测试
2401_8914504616 小时前
Python上下文管理器(with语句)的原理与实践
jvm·数据库·python
林籁泉韵716 小时前
GEO服务商深度评测:在AI重构的信息世界中,谁能为品牌奠定“数据基石”?
人工智能·重构
helloworldandy16 小时前
使用Python处理计算机图形学(PIL/Pillow)
jvm·数据库·python
Faker66363aaa16 小时前
基于YOLO11-Seg-EfficientViT的书籍缺陷检测与分类系统详解
人工智能·分类·数据挖掘
Juicedata17 小时前
JuiceFS 企业版 5.3 特性详解:单文件系统支持超 5,000 亿文件,首次引入 RDMA
大数据·人工智能·机器学习·性能优化·开源
2501_9445255417 小时前
Flutter for OpenHarmony 个人理财管理App实战 - 预算详情页面
android·开发语言·前端·javascript·flutter·ecmascript
Piar1231sdafa17 小时前
蓝莓目标检测——改进YOLO11-C2TSSA-DYT-Mona模型实现
人工智能·目标检测·计算机视觉
愚公搬代码17 小时前
【愚公系列】《AI短视频创作一本通》002-AI引爆短视频创作革命(短视频创作者必备的能力)
人工智能