Pytorch学习--神经网络--线性层及其他层

一、正则化层

torch.nn.BatchNorm2d

python 复制代码
torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, device=None, dtype=None)

正则化的意义:

  • 加速训练收敛:在每一层网络的输入上执行批量归一化可以保持数据的分布稳定,从而减小梯度的波动。这种稳定性让模型更快收敛,从而提高训练速度。

  • 减轻梯度消失和梯度爆炸问题:通过调整每一层的输入分布,Batch Normalization可以减轻深层网络中梯度消失和梯度爆炸的现象,使得更深的网络也能够得到有效的训练。

  • 减少对权重初始化的敏感性:Batch Normalization可以减小网络对权重初始化的依赖,使得模型可以在更宽的初始化范围内有效训练。这减少了在不同模型初始化方案间进行调试的时间和精力。

  • 提高模型的泛化能力:Batch Normalization在训练时引入了少量噪声(由于 mini-batch 的不同),这在一定程度上起到了正则化作用,有助于提高模型的泛化能力,降低过拟合的风险。

  • 降低学习率调整的难度:使用Batch Normalization可以让模型在较高的学习率下进行训练,从而进一步加速训练过程。

二、Dropout层

torch.nn.Dropout

python 复制代码
torch.nn.Dropout(p=0.5, inplace=False)

防止过拟合

三、线性层

torch.nn.Linear

python 复制代码
torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

代码实现:

CIFAR 中的图片 转换为 一维的数据(1,m),再转换成 (1,n) 的维度

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10(root="datasets",train=False,transform=torchvision.transforms.ToTensor(),download=True)

dataloader = DataLoader(dataset,batch_size=64)

class Mary(nn.Module):
    def __init__(self):
        super(Mary,self).__init__()
        self.linear1 = Linear(196608,10)
    def forward(self,x):
        x = self.linear1(x)
        return x
Yorelee = Mary()

for data in dataloader:
    img,targets = data
    img = torch.flatten(img)
    print(img.shape)
    output = Yorelee(img)
    print(output.shape)

输出:

python 复制代码
torch.Size([196608])
torch.Size([10])
相关推荐
有Li5 分钟前
低场强下胎儿身体器官T2*弛豫测定(FOREST)/文献速递-基于人工智能的医学影像技术
人工智能·深度学习·计算机视觉
wdfk_prog15 分钟前
[Linux]学习笔记系列 -- [driver]base
linux·笔记·学习
百***787517 分钟前
Grok-4.1与GPT-5.2深度对比:技术差异、适用场景及Python集成指南
java·python·gpt
全栈开发圈18 分钟前
干货分享|鸿蒙6开发实战指南
人工智能·harmonyos·鸿蒙·鸿蒙系统
am心36 分钟前
学习笔记-套餐接口
笔记·学习
房产中介行业研习社1 小时前
2026年1月房产中介管理系统排名
大数据·人工智能
科技林总1 小时前
【系统分析师】3.6 操作系统
学习
沛沛老爹1 小时前
Web转AI架构篇 Agent Skills vs MCP:工具箱与标准接口的本质区别
java·开发语言·前端·人工智能·架构·企业开发
黎雁·泠崖1 小时前
吃透Java操作符进阶:算术+移位操作符 全解析(Java&C区别+完整案例+避坑指南)
java·c语言·python
ZKNOW甄知科技1 小时前
IT自动分派单据:让企业服务流程更智能、更高效的关键技术
大数据·运维·数据库·人工智能·低代码·自动化