Pytorch学习--神经网络--线性层及其他层

一、正则化层

torch.nn.BatchNorm2d

python 复制代码
torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, device=None, dtype=None)

正则化的意义:

  • 加速训练收敛:在每一层网络的输入上执行批量归一化可以保持数据的分布稳定,从而减小梯度的波动。这种稳定性让模型更快收敛,从而提高训练速度。

  • 减轻梯度消失和梯度爆炸问题:通过调整每一层的输入分布,Batch Normalization可以减轻深层网络中梯度消失和梯度爆炸的现象,使得更深的网络也能够得到有效的训练。

  • 减少对权重初始化的敏感性:Batch Normalization可以减小网络对权重初始化的依赖,使得模型可以在更宽的初始化范围内有效训练。这减少了在不同模型初始化方案间进行调试的时间和精力。

  • 提高模型的泛化能力:Batch Normalization在训练时引入了少量噪声(由于 mini-batch 的不同),这在一定程度上起到了正则化作用,有助于提高模型的泛化能力,降低过拟合的风险。

  • 降低学习率调整的难度:使用Batch Normalization可以让模型在较高的学习率下进行训练,从而进一步加速训练过程。

二、Dropout层

torch.nn.Dropout

python 复制代码
torch.nn.Dropout(p=0.5, inplace=False)

防止过拟合

三、线性层

torch.nn.Linear

python 复制代码
torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

代码实现:

CIFAR 中的图片 转换为 一维的数据(1,m),再转换成 (1,n) 的维度

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10(root="datasets",train=False,transform=torchvision.transforms.ToTensor(),download=True)

dataloader = DataLoader(dataset,batch_size=64)

class Mary(nn.Module):
    def __init__(self):
        super(Mary,self).__init__()
        self.linear1 = Linear(196608,10)
    def forward(self,x):
        x = self.linear1(x)
        return x
Yorelee = Mary()

for data in dataloader:
    img,targets = data
    img = torch.flatten(img)
    print(img.shape)
    output = Yorelee(img)
    print(output.shape)

输出:

python 复制代码
torch.Size([196608])
torch.Size([10])
相关推荐
Mxsoft61913 分钟前
某次联邦学习训练模型不准,发现协议转换字段映射错,手动校验救场!
人工智能
shayudiandian43 分钟前
用PyTorch训练一个猫狗分类器
人工智能·pytorch·深度学习
这儿有一堆花1 小时前
把 AI 装进终端:Gemini CLI 上手体验与核心功能解析
人工智能·ai·ai编程
子午1 小时前
【蘑菇识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
Mr_Xuhhh1 小时前
pytest -- 指定⽤例执⾏顺序
开发语言·python·pytest
tokepson1 小时前
关于python更换永久镜像源
python·技术·记录
模型启动机1 小时前
Langchain正式宣布,Deep Agents全面支持Skills,通用AI代理的新范式?
人工智能·ai·langchain·大模型·agentic ai
F_D_Z1 小时前
【解决办法】网络训练报错AttributeError: module ‘jax.core‘ has no attribute ‘Shape‘.
开发语言·python·jax
Python私教1 小时前
别让 API Key 裸奔:基于 TRAE SOLO 的大模型安全配置最佳实践
人工智能
Python私教1 小时前
Vibe Coding 体验报告:我让 TRAE SOLO 替我重构了 2000 行屎山代码,结果...
人工智能