Pytorch学习--神经网络--线性层及其他层

一、正则化层

torch.nn.BatchNorm2d

python 复制代码
torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, device=None, dtype=None)

正则化的意义:

  • 加速训练收敛:在每一层网络的输入上执行批量归一化可以保持数据的分布稳定,从而减小梯度的波动。这种稳定性让模型更快收敛,从而提高训练速度。

  • 减轻梯度消失和梯度爆炸问题:通过调整每一层的输入分布,Batch Normalization可以减轻深层网络中梯度消失和梯度爆炸的现象,使得更深的网络也能够得到有效的训练。

  • 减少对权重初始化的敏感性:Batch Normalization可以减小网络对权重初始化的依赖,使得模型可以在更宽的初始化范围内有效训练。这减少了在不同模型初始化方案间进行调试的时间和精力。

  • 提高模型的泛化能力:Batch Normalization在训练时引入了少量噪声(由于 mini-batch 的不同),这在一定程度上起到了正则化作用,有助于提高模型的泛化能力,降低过拟合的风险。

  • 降低学习率调整的难度:使用Batch Normalization可以让模型在较高的学习率下进行训练,从而进一步加速训练过程。

二、Dropout层

torch.nn.Dropout

python 复制代码
torch.nn.Dropout(p=0.5, inplace=False)

防止过拟合

三、线性层

torch.nn.Linear

python 复制代码
torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

代码实现:

CIFAR 中的图片 转换为 一维的数据(1,m),再转换成 (1,n) 的维度

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10(root="datasets",train=False,transform=torchvision.transforms.ToTensor(),download=True)

dataloader = DataLoader(dataset,batch_size=64)

class Mary(nn.Module):
    def __init__(self):
        super(Mary,self).__init__()
        self.linear1 = Linear(196608,10)
    def forward(self,x):
        x = self.linear1(x)
        return x
Yorelee = Mary()

for data in dataloader:
    img,targets = data
    img = torch.flatten(img)
    print(img.shape)
    output = Yorelee(img)
    print(output.shape)

输出:

python 复制代码
torch.Size([196608])
torch.Size([10])
相关推荐
Lucifer__hell15 分钟前
【python+tkinter】图形界面简易计算器的实现
开发语言·python·tkinter
im_AMBER15 分钟前
React 15
前端·javascript·笔记·学习·react.js·前端框架
许泽宇的技术分享16 分钟前
AI黑客来袭:Strix如何用大模型重新定义渗透测试游戏规则
人工智能
2301_8129148717 分钟前
py day34 装饰器
开发语言·python
Oxo Security23 分钟前
【AI安全】检索增强生成(RAG)
人工智能·安全·网络安全·ai
少林码僧27 分钟前
2.3 Transformer 变体与扩展:BERT、GPT 与多模态模型
人工智能·gpt·ai·大模型·bert·transformer·1024程序员节
shayudiandian30 分钟前
如何使用 DeepSeek 帮助自己的工作
人工智能
snakecy44 分钟前
树莓派学习资料共享
大数据·开发语言·学习·系统架构
我的xiaodoujiao1 小时前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 24--数据驱动--参数化处理 Excel 文件 1
python·学习·测试工具·pytest
Nebula_g1 小时前
C语言应用实例:学生管理系统1(指针、结构体综合应用,动态内存分配)
c语言·开发语言·学习·算法·基础