速来!未发表!DTW-Kmeans-Transformer-BiLSTM组合模型!时序聚类+状态识别!

速来!未发表!DTW-Kmeans-Transformer-BiLSTM组合模型!时序聚类+状态识别!

目录

效果一览










基本介绍

1.创新未发表!研究亮点!时序聚类+状态识别,DTW-Kmeans-Transformer-BiLSTM组合模型,运行环境Matlab2023b及以上;基于动态时间规整(DTW)的kmeans序列聚类算法,将DTW算法求得的距离取代欧式距离衡量不同长度的阵列或时间序列之间的相似性或距离,实现时间序列的聚类。算法为Matlab编写,注释清晰,逻辑详细,可以方便地替换数据。

2.excel数据,方便替换,先运行main1_DTW_Kmeans对时序数据进行聚类、再运行main2_Transformer_BiLSTM对聚类后的数据进行识别,其余为函数文件无需运行,可在下载区获取数据和程序内容,适用于交通、气象、负荷等领域。

3.图很多,包括聚类效果图、分类识别效果图,混淆矩阵图。命令窗口输出分类准确率、灵敏度、特异性、曲线下面积、Kappa系数、F值。

4.附赠案例数据可直接运行main一键出图,注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。可在下载区获取数据和程序内容。

程序设计

  • 完整源码和数据获取方式私信博主回复DTW-Kmeans-Transformer-BiLSTM组合模型
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行



%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                    % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数

         
end

%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

t_train = categorical(T_train)';
t_test  = categorical(T_test )';

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, num_dim, 1, 1, M));
P_test  =  double(reshape(P_test , num_dim, 1, 1, N));

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1} = P_test( :, :, 1, i);
end


%网络搭建
numChannels = num_dim;
maxPosition = 256;
numHeads = 4;
numKeyChannels = numHeads*32;

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501

[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
rommel rain15 小时前
SpecInfer论文阅读
人工智能·语言模型·transformer
Just Jump1 天前
机器翻译基础与模型 之三:基于自注意力的模型
自然语言处理·transformer·机器翻译
cv君2 天前
视频修复技术和实时在线处理
深度学习·音视频·transformer·视频修复
数据猎手小k2 天前
PCBS:由麻省理工学院和Google联合创建,揭示1.2M短文本间的相似性的大规模图聚类数据集。
机器学习·支持向量机·数据集·聚类·机器学习数据集·ai大模型应用
汤姆和佩琦2 天前
2024-11-16-机器学习方法:无监督学习(1) 聚类(上)
人工智能·笔记·学习·机器学习·聚类·无监督学习
机器学习之心2 天前
POD-Transformer多变量回归预测(Matlab)
matlab·回归·transformer·pod-transformer
regret~2 天前
【论文笔记】LoFLAT: Local Feature Matching using Focused Linear Attention Transformer
论文阅读·深度学习·transformer
秀儿还能再秀2 天前
DBSCAN聚类——基于密度的聚类算法(常用的聚类算法)
机器学习·学习笔记·聚类·dbscan
迪菲赫尔曼2 天前
即插即用篇 | YOLOv11 引入高效的直方图Transformer模块 | 突破天气障碍:Histoformer引领高效图像修复新路径
人工智能·深度学习·yolo·目标检测·计算机视觉·transformer·注意力机制
Hqst 网络变压器 Andy3 天前
How to connect a 2.5G network transformer to an RJ45 network port and chip
深度学习·5g·transformer