<项目代码>YOLOv8 煤矸石识别<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情可以参考博主写的文章<数据集>煤矸石识别数据集<目标检测>

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone
  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
- Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
- Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 results.png

3.5 F1_curve

3.6 confusion_matrix

3.7 confusion_matrix_normalized

3.8 验证 batch

标签:

预测结果:

3.9 识别效果图

相关推荐
长空任鸟飞_阿康4 分钟前
提示词管理器设计:从需求到用户体验的高效落地逻辑
前端·人工智能·ux
DDC楼宇自控与IBMS集成系统解读9 分钟前
医院 BAS 楼宇自控系统 + IBMS 智能化集成系统:医疗场景下的智慧运营解决方案
人工智能·ibms智能化集成系统·智能照明系统·数字孪生管理平台·ba楼宇自控系统·医院智能化系统·智能化弱电工程
ARM+FPGA+AI工业主板定制专家11 分钟前
基于JETSON+FPGA+GMSL相机 vs 传统工业相机:高动态范围与低延迟如何重塑机器感知视觉?
人工智能·数码相机·机器学习·自动驾驶
岁岁岁平安14 分钟前
python基本数据类型、字典、 集合、条件与循环控制、函数(3)
python·学习·集合·函数·字典·python3
云卓SKYDROID26 分钟前
无人机中继器模式技术对比
人工智能·游戏引擎·php·无人机·cocos2d·高科技·云卓科技
arron889931 分钟前
PNNX + TorchScript + 手动修改后处理逻辑,最终输出适配 NCNN官方 yolov8.cpp
yolo
董建光d32 分钟前
【深度学习】目标检测全解析:定义、数据集、评估指标与主流算法
深度学习·算法·目标检测
星空的资源小屋1 小时前
RoboIntern,一款自动化办公小助手
运维·人工智能·pdf·自动化·电脑·excel
麒羽7601 小时前
从 YOLOv1 到 YOLOv2
yolo