<项目代码>YOLOv8 煤矸石识别<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情可以参考博主写的文章<数据集>煤矸石识别数据集<目标检测>

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone
  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
- Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
- Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 results.png

3.5 F1_curve

3.6 confusion_matrix

3.7 confusion_matrix_normalized

3.8 验证 batch

标签:

预测结果:

3.9 识别效果图

相关推荐
什么都想学的阿超14 分钟前
【大语言模型 00】导读
人工智能·语言模型·自然语言处理
lxmyzzs16 分钟前
【图像算法 - 16】庖丁解牛:基于YOLO12与OpenCV的车辆部件级实例分割实战(附完整代码)
人工智能·深度学习·opencv·算法·yolo·计算机视觉·实例分割
明心知21 分钟前
DAY 45 Tensorboard使用介绍
人工智能·深度学习
R-G-B39 分钟前
OpenCV Python——Numpy基本操作(Numpy 矩阵操作、Numpy 矩阵的检索与赋值、Numpy 操作ROI)
python·opencv·numpy·numpy基本操作·numpy 矩阵操作·numpy 矩阵的检索与赋值·numpy 操作roi
维维180-3121-14551 小时前
AI大模型+Meta分析:助力发表高水平SCI论文
人工智能·meta分析·医学·地学
细节处有神明1 小时前
Jupyter 中实现交互式图表:ipywidgets 从入门到部署
ide·python·jupyter
小小码农一只1 小时前
Python 爬虫实战:玩转 Playwright 跨浏览器自动化(Chromium/Firefox/WebKit 全支持)
爬虫·python·自动化
程序员陆通1 小时前
CloudBase AI ToolKit + VSCode Copilot:打造高效智能云端开发新体验
人工智能·vscode·copilot
程高兴1 小时前
遗传算法求解冷链路径优化问题matlab代码
开发语言·人工智能·matlab
拾零吖1 小时前
吴恩达 Machine Learning(Class 1)
人工智能·机器学习