了解VGG网络并利用PyTorch实现VGG网络

1 问题

VGG(Visual Geometry Group)是一种经典的卷积神经网络(CNN)架构,由牛津大学的研究人员开发,广泛用于图像分类和识别任务。VGG网络采用了深层卷积神经网络的思想,其主要特点是使用小尺寸的卷积核(通常是3x3)和堆叠的卷积层,以增加网络的深度。

2 方法

以下是使用PyTorch实现VGG16的示例代码:

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| import torch import torch.nn as nn # 定义VGG16模型 class VGG16(nn.Module): def init(self, num_classes=1000): super(VGG16, self).__init() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(128, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(256, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2) ) self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, num_classes) ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x # 创建VGG16实例 model = VGG16() # 打印模型结构 print(model) |

3 结语

这段代码定义了一个VGG16模型,包括卷积层和全连接层,你可以根据需要加载预训练的权重、定义损失函数和优化器,然后对图像数据进行训练。

相关推荐
Json_5 分钟前
Vue 构造器 Vue.extend
前端·vue.js·深度学习
Json_14 分钟前
Vue 实例方法
前端·vue.js·深度学习
十五年专注C++开发23 分钟前
WebSocket原理详解(二)
网络·websocket·网络协议
搞不懂语言的程序员24 分钟前
装饰器模式详解
开发语言·python·装饰器模式
mosquito_lover128 分钟前
矿山边坡监测预警系统设计
人工智能·python·深度学习·神经网络·视觉检测
船长@Quant29 分钟前
PyTorch量化进阶教程:第二章 Transformer 理论详解
pytorch·python·深度学习·transformer·量化交易·sklearn·ta-lib
契合qht53_shine29 分钟前
OpenCV 从入门到精通(day_03)
人工智能·opencv·计算机视觉
Json_42 分钟前
实例入门 实例属性
前端·深度学习
Json_42 分钟前
JS中的apply和arguments小练习
前端·javascript·深度学习
攻城狮7号1 小时前
【第一节】Python爬虫基础-HTTP基本原理
爬虫·python·python爬虫