了解VGG网络并利用PyTorch实现VGG网络

1 问题

VGG(Visual Geometry Group)是一种经典的卷积神经网络(CNN)架构,由牛津大学的研究人员开发,广泛用于图像分类和识别任务。VGG网络采用了深层卷积神经网络的思想,其主要特点是使用小尺寸的卷积核(通常是3x3)和堆叠的卷积层,以增加网络的深度。

2 方法

以下是使用PyTorch实现VGG16的示例代码:

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| import torch import torch.nn as nn # 定义VGG16模型 class VGG16(nn.Module): def init(self, num_classes=1000): super(VGG16, self).__init() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(128, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(256, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2) ) self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, num_classes) ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x # 创建VGG16实例 model = VGG16() # 打印模型结构 print(model) |

3 结语

这段代码定义了一个VGG16模型,包括卷积层和全连接层,你可以根据需要加载预训练的权重、定义损失函数和优化器,然后对图像数据进行训练。

相关推荐
学术小白人40 分钟前
【EI会议征稿通知】2026年智能感知与自主控制国际学术会议(IPAC 2026)
人工智能·物联网·数据分析·区块链·能源
HyperAI超神经1 小时前
在线教程丨 David Baker 团队开源 RFdiffusion3,实现全原子蛋白质设计的生成式突破
人工智能·深度学习·学习·机器学习·ai·cpu·gpu
ASKED_20194 小时前
End-To-End之于推荐: Meta GRs & HSTU 生成式推荐革命之作
人工智能
liulanba4 小时前
AI Agent技术完整指南 第一部分:基础理论
数据库·人工智能·oracle
自动化代码美学4 小时前
【AI白皮书】AI应用运行时
人工智能
小CC吃豆子4 小时前
openGauss :核心定位 + 核心优势 + 适用场景
人工智能
一瞬祈望4 小时前
⭐ 深度学习入门体系(第 7 篇): 什么是损失函数?
人工智能·深度学习·cnn·损失函数
徐小夕@趣谈前端4 小时前
15k star的开源项目 Next AI Draw.io:AI 加持下的图表绘制工具
人工智能·开源·draw.io
优爱蛋白4 小时前
MMP-9(20-469) His Tag 蛋白:高活性可溶性催化结构域的研究工具
人工智能·健康医疗
阿正的梦工坊4 小时前
Kronecker积详解
人工智能·深度学习·机器学习