了解VGG网络并利用PyTorch实现VGG网络

1 问题

VGG(Visual Geometry Group)是一种经典的卷积神经网络(CNN)架构,由牛津大学的研究人员开发,广泛用于图像分类和识别任务。VGG网络采用了深层卷积神经网络的思想,其主要特点是使用小尺寸的卷积核(通常是3x3)和堆叠的卷积层,以增加网络的深度。

2 方法

以下是使用PyTorch实现VGG16的示例代码:

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| import torch import torch.nn as nn # 定义VGG16模型 class VGG16(nn.Module): def init(self, num_classes=1000): super(VGG16, self).__init() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(128, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(256, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2) ) self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, num_classes) ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x # 创建VGG16实例 model = VGG16() # 打印模型结构 print(model) |

3 结语

这段代码定义了一个VGG16模型,包括卷积层和全连接层,你可以根据需要加载预训练的权重、定义损失函数和优化器,然后对图像数据进行训练。

相关推荐
Tanecious.2 小时前
机器视觉--python基础语法
开发语言·python
guanshiyishi2 小时前
ABeam 德硕 | 中国汽车市场(2)——新能源车的崛起与中国汽车市场机遇与挑战
人工智能
ALe要立志成为web糕手2 小时前
SESSION_UPLOAD_PROGRESS 的利用
python·web安全·网络安全·ctf
极客天成ScaleFlash2 小时前
极客天成NVFile:无缓存直击存储性能天花板,重新定义AI时代并行存储新范式
人工智能·缓存
Uzuki2 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
yuzhangfeng3 小时前
【云计算物理网络】从传统网络到SDN:云计算的网络演进之路
网络·云计算
TDengine (老段)3 小时前
TDengine 中的关联查询
大数据·javascript·网络·物联网·时序数据库·tdengine·iotdb
zhu12893035563 小时前
网络安全的现状与防护措施
网络·安全·web安全
澳鹏Appen3 小时前
AI安全:构建负责任且可靠的系统
人工智能·安全
Tttian6223 小时前
Python办公自动化(3)对Excel的操作
开发语言·python·excel