了解VGG网络并利用PyTorch实现VGG网络

1 问题

VGG(Visual Geometry Group)是一种经典的卷积神经网络(CNN)架构,由牛津大学的研究人员开发,广泛用于图像分类和识别任务。VGG网络采用了深层卷积神经网络的思想,其主要特点是使用小尺寸的卷积核(通常是3x3)和堆叠的卷积层,以增加网络的深度。

2 方法

以下是使用PyTorch实现VGG16的示例代码:

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| import torch import torch.nn as nn # 定义VGG16模型 class VGG16(nn.Module): def init(self, num_classes=1000): super(VGG16, self).__init() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(128, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(256, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2) ) self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, num_classes) ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x # 创建VGG16实例 model = VGG16() # 打印模型结构 print(model) |

3 结语

这段代码定义了一个VGG16模型,包括卷积层和全连接层,你可以根据需要加载预训练的权重、定义损失函数和优化器,然后对图像数据进行训练。

相关推荐
溯Sec13 分钟前
shodan(五)连接Mongodb数据库&Jenkins&org、net、查看waf命令
网络·安全·web安全·网络安全·系统安全·网络攻击模型·安全架构
灰哥数据智能17 分钟前
DB-GPT系列(二):DB-GPT部署(镜像一键部署、源码部署)
python·gpt·语言模型·数据分析
镜花照无眠17 分钟前
sklearn红酒数据集分类器的构建和评估
python·sklearn
矩阵猫咪21 分钟前
【深度学习】时间序列预测、分类、异常检测、概率预测项目实战案例
人工智能·pytorch·深度学习·神经网络·机器学习·transformer·时间序列预测
OJAC近屿智能35 分钟前
热门 AI 培训机构大盘点!近屿智能、黑马、博为峰,哪家更适合你的需求?
人工智能
热爱编程的OP37 分钟前
《Python编程实训快速上手》第二天--第四章:列表
python
小张贼嚣张39 分钟前
yolov8涨点系列之HiLo注意力机制引入
深度学习·yolo·机器学习
CV-King44 分钟前
yolov11-cpp-opencv-dnn推理onnx模型
人工智能·opencv·yolo·计算机视觉·dnn
不是AI1 小时前
【持续更新】【NLP项目】【自然语言处理】智能聊天机器人——“有问必答”【Chatbot】第1章、《系统、环境》
人工智能·自然语言处理·机器人
techzhi1 小时前
为什么TCP(TIME_WAIT)2倍MSL
服务器·网络·tcp/ip