flink 自定义kudu connector中使用Metrics计数平均吞吐量,并推送到自定义kafkaReporter

文章目录

    • 前言
    • [1. Registering metrics](#1. Registering metrics)
    • [2. Metrics 的类型](#2. Metrics 的类型)
      • [2.1 counter](#2.1 counter)
      • [2.2 Gauge](#2.2 Gauge)
      • [2.3 Histogram](#2.3 Histogram)
      • [2.4 meter](#2.4 meter)
    • [3. 指标划分](#3. 指标划分)
      • [3.1 指标所属的范围](#3.1 指标所属的范围)
      • [3.2 默认所属](#3.2 默认所属)
    • [4. 自定义kudu connector中使用Metrics](#4. 自定义kudu connector中使用Metrics)
      • [4.1 sink算子继承RichFunction](#4.1 sink算子继承RichFunction)
      • [4.2 注册指标](#4.2 注册指标)
      • [4.3 计数逻辑](#4.3 计数逻辑)
      • [4.4 自定义Reporter,推送metric到kafka](#4.4 自定义Reporter,推送metric到kafka)
      • [4.5 结果展示](#4.5 结果展示)

前言

Flink exposes a metric system that allows gathering and exposing metrics to external systems

1. Registering metrics

继承RichFunction,调用getRuntimeContext().getMetricGroup()


2. Metrics 的类型

2.1 counter

计数器,累加或者累减

2.2 Gauge

提供各种类型的值

2.3 Histogram

表示度量值的统计结果,如平均值、最大值

2.4 meter

表示平均吞吐量,单位时间内事件次数


3. 指标划分

3.1 指标所属的范围

3.2 默认所属


4. 自定义kudu connector中使用Metrics

4.1 sink算子继承RichFunction

4.2 注册指标

4.3 计数逻辑

ps:kudu写入实际指标包含2个,一个是每分钟流量,在try代码块中,一个是每分钟错误数量,在catch代码块中


4.4 自定义Reporter,推送metric到kafka



flink-conf.yaml配置注册的类和参数

4.5 结果展示

相关推荐
代码匠心1 小时前
从零开始学Flink:数据源
java·大数据·后端·flink
Lx3524 小时前
复杂MapReduce作业设计:多阶段处理的最佳实践
大数据·hadoop
武子康6 小时前
大数据-100 Spark DStream 转换操作全面总结:map、reduceByKey 到 transform 的实战案例
大数据·后端·spark
expect7g7 小时前
Flink KeySelector
大数据·后端·flink
阿里云大数据AI技术1 天前
StarRocks 助力数禾科技构建实时数仓:从数据孤岛到智能决策
大数据
Lx3521 天前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop
武子康1 天前
大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流
大数据·后端·spark
阿里云大数据AI技术2 天前
大数据公有云市场第一,阿里云占比47%!
大数据
Lx3522 天前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
T06205142 天前
工具变量-5G试点城市DID数据(2014-2025年
大数据