flink 自定义kudu connector中使用Metrics计数平均吞吐量,并推送到自定义kafkaReporter

文章目录

    • 前言
    • [1. Registering metrics](#1. Registering metrics)
    • [2. Metrics 的类型](#2. Metrics 的类型)
      • [2.1 counter](#2.1 counter)
      • [2.2 Gauge](#2.2 Gauge)
      • [2.3 Histogram](#2.3 Histogram)
      • [2.4 meter](#2.4 meter)
    • [3. 指标划分](#3. 指标划分)
      • [3.1 指标所属的范围](#3.1 指标所属的范围)
      • [3.2 默认所属](#3.2 默认所属)
    • [4. 自定义kudu connector中使用Metrics](#4. 自定义kudu connector中使用Metrics)
      • [4.1 sink算子继承RichFunction](#4.1 sink算子继承RichFunction)
      • [4.2 注册指标](#4.2 注册指标)
      • [4.3 计数逻辑](#4.3 计数逻辑)
      • [4.4 自定义Reporter,推送metric到kafka](#4.4 自定义Reporter,推送metric到kafka)
      • [4.5 结果展示](#4.5 结果展示)

前言

Flink exposes a metric system that allows gathering and exposing metrics to external systems

1. Registering metrics

继承RichFunction,调用getRuntimeContext().getMetricGroup()


2. Metrics 的类型

2.1 counter

计数器,累加或者累减

2.2 Gauge

提供各种类型的值

2.3 Histogram

表示度量值的统计结果,如平均值、最大值

2.4 meter

表示平均吞吐量,单位时间内事件次数


3. 指标划分

3.1 指标所属的范围

3.2 默认所属


4. 自定义kudu connector中使用Metrics

4.1 sink算子继承RichFunction

4.2 注册指标

4.3 计数逻辑

ps:kudu写入实际指标包含2个,一个是每分钟流量,在try代码块中,一个是每分钟错误数量,在catch代码块中


4.4 自定义Reporter,推送metric到kafka



flink-conf.yaml配置注册的类和参数

4.5 结果展示

相关推荐
宅小海3 小时前
scala String
大数据·开发语言·scala
小白的白是白痴的白3 小时前
11.17 Scala练习:梦想清单管理
大数据
java1234_小锋3 小时前
Elasticsearch是如何实现Master选举的?
大数据·elasticsearch·搜索引擎
宝哥大数据4 小时前
Flink Joins
flink
Java 第一深情7 小时前
零基础入门Flink,掌握基本使用方法
大数据·flink·实时计算
我的K84097 小时前
Flink整合Hudi及使用
linux·服务器·flink
MXsoft6187 小时前
华为服务器(iBMC)硬件监控指标解读
大数据·运维·数据库
PersistJiao8 小时前
Spark 分布式计算中网络传输和序列化的关系(二)
大数据·网络·spark·序列化·分布式计算
九河云8 小时前
如何对AWS进行节省
大数据·云计算·aws
FreeIPCC9 小时前
谈一下开源生态对 AI人工智能大模型的促进作用
大数据·人工智能·机器人·开源