LLaMA系列一直在假装开源...

伙伴们,很奇怪~ 关于LLM的开源与闭源模型的竞争又开始愈发激烈。

众所周知,开源模型以其开放性和社区驱动的特点受到一部分用户的青睐,而闭源模型则因其专业性和性能优化被广泛应用于商业领域。由于大模型最近2年的突然兴起,开源社区对"开源"有了重新定义。终于开放源代码倡议(OSI)于10月2日首次发布了开源 AI 定义的暂行版本 1.0,其中Meta 和 Google等作为其重要参与者,为LLaMA等披上了"开源"的外衣,为什么这么说呢。于是这次专门写个文章主要想通过技术、商业等层面的比较,一起探讨下开源、假装开源和闭源这件事。

(: 主要是网上吵的太厉害。。谈谈鄙人浅薄的看法吧。。

到底啥是开源、假装开源和闭源?

在讨论开源与闭源模型的优劣之前,我们首先要明确两者的定义。开源模型 指的是那些源代码、数据集、训练过程等对公众开放,允许自由使用、修改和分发的模型。假装开源 就比如LLaMA等大部分目前所谓的开源模型,因为它们只开源了模型参数而已。而闭源模型则是这些要素不公开,通常由单一实体控制,使用受限的模型。开源模型因其透明性和社区参与度高而受到一部分开发者的喜爱;假装开源模型则可以让我们感觉到自我认为我们能掌控该模型的所有;但闭源模型在性能优化、安全性和专业性服务方面可能更具优势。

开源模型的最大特点是其开放性,这使得全球的开发者都可以参与到模型的改进和创新中来。然而,这种开放性也带来了一定的风险,比如安全漏洞和隐私泄露。相比之下,闭源模型由于其源代码和数据集的不公开,能够提供更好的安全性和隐私保护,同时,专业的团队也能够对模型进行更深入的优化。大家可能会搞混淆的另一个概念是软件开源,这俩的区分是:软件开源主要针对应用程序和工具,开源的资源需求较低,而大语言模型的开源则涉及大量计算资源、训练细节、高质量数据和最终的模型参数,并且可能有更多使用限制。

技术层面的比较

性能与优化 方面,闭源模型通常由专业团队进行优化,能够针对特定的应用场景进行定制和调整,因此在性能上可能更优。假装开源模型因为不开源优化细节trick等非常核心的部分,导致大家无法复现其完全公布的性能,只能接近;而开源模型能够快速集成社区的创新,但其优化速度和效果往往受限于社区的活跃度和技术能力。数据集与训练过程也是衡量模型优劣的重要指标。闭源模型可能使用更高质量或更大规模的数据集进行训练(默认闭源都是公司级别主导的);假装开源模型则不公开数据集和具体训练过程,只能让你用训好的模型,但无法改进,在不这样的情况下train或者sft模型直接会影响了模型的准确性和鲁棒性的...;而开源模型的数据集和训练过程可能不够完善。

是的。。真正完全开源的基本都是你没听说过得。。

安全性与隐私方面,闭源模型由于其不公开的特性,能够更好地控制数据的使用和流动,从而提供更好的安全性和隐私保护(意思就是你看不到我数据,无法直接发现我的漏洞)。假装开源模型可以直接让大家通过各种后门攻击来直接测试漏洞是否存在,很危险。而开源模型必然也可能存在安全漏洞和隐私泄露的风险,尤其是在数据集和训练过程中,但是能够和黑客进行攻防战,在不涉及难以挽回的场景下,可以不断优化安全领域的研究工作~

易用性与支持也是用户选择模型时考虑的重要因素。闭源模型通常提供专业的技术支持和客户服务,易用性较高。而假装开源和开源模型一样了,虽然社区活跃,但支持可能不及时或不专业,这对于需要快速解决问题的用户来说可能是一个缺点。

实际案例分析

以Meta的LLaMA模型为例,尽管LLaMA模型开源,但其使用条款中存在一定的限制,比如对于拥有超过7亿用户的应用程序的商业用途限制,以及不提供对训练数据的访问,这导致其不符合开放源代码促进会(OSI)的开源标准。这表明即使是开源模型,也可能存在使用上的限制,并不总是能够满足用户的需求。

另一方面,OpenAI的ChatGPT(o1-mini/o1-preview/GPT-4o等)以及国内百度的ERNIE模型作为闭源模型,虽然也被诟病不开源啥的,在实际应用当中表现出了更高的性能和易用性(难以想象吧~)。通过对少量数据的精调和后预训练,ERNIE模型在AI续写等场景中的表现优于同等参数规模的开源模型,这证明了闭源模型在特定业务场景下的优势。

商业与市场角度

从商业模式的角度来看,开源模型可能依赖于社区和广告收入,其商业模式可能不如闭源模型明确。闭源模型通过订阅服务和专业技术支持创造收入,商业模式更为成熟和稳定~

哎,还是钱钱钱~ 没办法~

在市场竞争力方面,闭源模型因其专业性和性能优化,在专业领域和高端市场中更具竞争力。而开源模型则在教育和非盈利领域更受欢迎,因其开放性和低成本的特点。

结论

综上所述,开源模型并不一定比闭源模型好。现在突然想到了某度老板曾说过:开源模型会越来越落后。当初不以为然,现在深层考虑下,好吧,或许说得也有些道理。

选择模型时应考虑具体的业务需求、技术条件以及市场环境。开源模型的开放性和社区驱动的特点在某些场景下具有优势,而闭源模型在性能优化、安全性和专业性服务方面可能更胜一筹。因此,用户在选择模型时,应根据自身的需求和条件,做出最合适的选择。

但是对于咱们普通人来说,随便玩玩模型,当时我必站队开源啊,否则我咋发论文?科学咋进步?嘿嘿~

公司那种高端服务,对于准确率和成本还要求特别严格的,还是踏踏实实选择闭源的服务吧。开源你玩不起,成本你都hold不住,谁让它们假装开源!给你400+B的我看你finetune到啥时候才能商用~

说到这吧,下课~

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

相关推荐
边缘计算社区4 分钟前
首个!艾灵参编的工业边缘计算国家标准正式发布
大数据·人工智能·边缘计算
游客52015 分钟前
opencv中的各种滤波器简介
图像处理·人工智能·python·opencv·计算机视觉
一位小说男主15 分钟前
编码器与解码器:从‘乱码’到‘通话’
人工智能·深度学习
深圳南柯电子31 分钟前
深圳南柯电子|电子设备EMC测试整改:常见问题与解决方案
人工智能
Kai HVZ32 分钟前
《OpenCV计算机视觉》--介绍及基础操作
人工智能·opencv·计算机视觉
biter008837 分钟前
opencv(15) OpenCV背景减除器(Background Subtractors)学习
人工智能·opencv·学习
吃个糖糖43 分钟前
35 Opencv 亚像素角点检测
人工智能·opencv·计算机视觉
IT古董2 小时前
【漫话机器学习系列】017.大O算法(Big-O Notation)
人工智能·机器学习
凯哥是个大帅比2 小时前
人工智能ACA(五)--深度学习基础
人工智能·深度学习
Code哈哈笑2 小时前
【Java 学习】深度剖析Java多态:从向上转型到向下转型,解锁动态绑定的奥秘,让代码更优雅灵活
java·开发语言·学习