【STM32】INA3221三通道电压电流采集模块,HAL库

一、简单介绍

芯片的datasheet地址:

INA3221 三通道、高侧测量、分流和总线电压监视器,具有兼容 I2C 和 SMBUS 的接口 datasheet (Rev. B)

笔者所使用的INA3221是淘宝买的模块

原理图

模块的三个通道的电压都是一样,都是POWER。这个芯片采用的是高侧测量:每个通道有两个引脚,一个连接负载去给负载供电,另一个回来,回到GND

经过笔者测量和观察,采样电阻的阻值应该是100mΩ

二、模块与接线

INA3221使用IIC通信协议进行读写,笔者使用的是STM32G030F6P6单片机来操作,读者按实际情况类推即可,cubeMX配置,基本都大差不差。

POWER连接外部电源的正极

GND连接外部电源的负极

将模块的GND与单片机的GND连接起来,注意这里地接在一起,如果单片机连着电脑,请务必小心操作,不要接反也不要短路

三、cubemx配置

设置时钟

用内部的RC震荡就可以了,也可以使用外部晶振,但如果用外部晶振的话,这颗晶振必须是有源的,之前看一些G030的板子焊了一个无源晶振,有点匪夷所思。

设置IIC

打算把电压和电流显示在0.96寸的oled上,因此就开了两个IIC,当然了,只开一个也可以,把INA3221和OLED都接在一个IIC总线上就行了,但为了方便,笔者开了两个。

这里的频率可以开到1Mhz,如果是103C8T6,应该是到不了的😋

数据量很小,DMA就不开了

设置GPIO

由于模块上自带了LED灯,所以就没必要开输入IO口给模块,可以开一个监控单片机程序运行的LED

至此,cubeMX配置完毕

四、keil配置

五、驱动编写

打开手册关于编程的章节

支持快速IIC传输,且高位在前

不管是读还是写,一开始要发一个寄存器指针过去,定位一下寄存器

寄存器读写函数

cpp 复制代码
static void INA3221_ReadReg(INA3221_regType *reg)
{
   HAL_I2C_Mem_Read(INA3321_I2C, INA3221_I2C_ADDRESS, reg->address, 1, &reg->data, 2, 0xFFFF);
   DataReverse(reg->data, &reg->data);
}
 
 
static void INA3221_WriteReg(INA3221_regType *reg)
{
   DataReverse(reg->data, &reg->data);
   HAL_I2C_Mem_Write(INA3321_I2C, INA3221_I2C_ADDRESS, reg->address, 1, &reg->data, 2, 0xFFFF);
}

寄存器表

先简单读一下芯片的ID,看看是否能正常通信

读芯片的id号,值是0x2032,但波形是3220,因此要翻转一下高低字节

代码如下

cpp 复制代码
static void DataReverse(uint16_t raw, uint16_t* cook)
{
   *cook = ((uint8_t)(raw) << 8) | (raw >> 8);
}

读channel的bus电压值

一个位代表8mV,但寄存器里面的左移三位又刚好弥补了这一点,因此直接读到的就是电压值。

代码如下

cpp 复制代码
static void INA3221_Sample_Volt()
{
   INA3221_ReadReg(&volt1);
   INA3221_ReadReg(&volt2);
   INA3221_ReadReg(&volt3);
}

读channel的shunt电压值

一个位代表40uV,满量程是163.8mV,因此这个用的100mΩ的模块最大采集电流为1638mA

shunt可以是负数,代表反向电流,但模块设计成IN-接PWR了,笔者就只实验了正向电流

代码如下

cpp 复制代码
static void INA3221_Calculate_Current(uint32_t* current)
{
   current[0] = shunt1.data >> 3;
   /* 40uV per LSB */
   current[0] *= 4;
   current[0] = current[0] * 10 / SHUNT_RESISTOR;
 
 
   current[1] = shunt2.data >> 3;
 
   /* 40uV per LSB */
   current[1] *= 4;
   current[1] = current[1] * 10 / SHUNT_RESISTOR;
 
 
   current[2] = shunt3.data >> 3;
 
   /* 40uV per LSB */
   current[2] *= 4;
   current[2] = current[2] * 10 / SHUNT_RESISTOR;
}

主函数编写

cpp 复制代码
int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_I2C2_Init();
  MX_I2C1_Init();
  /* USER CODE BEGIN 2 */
INA3221_Init();
OLED_Init();
OLED_Clear();
OLED_ShowString(0,0,"C1",16);
OLED_ShowString(0,2,"C2",16);
OLED_ShowString(0,4,"C3",16);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    INA3221_GetVolt();
    INA3221_GetCurrent();

    sprintf(info[0], "%.2fV ", voltage[0]/1000.0f);
    sprintf(info[1], "%.2fV ", voltage[1]/1000.0f);
    sprintf(info[2], "%.2fV ", voltage[2]/1000.0f);
    OLED_ShowString(20,0,info[0],16);
    OLED_ShowString(20,2,info[1],16);
    OLED_ShowString(20,4,info[2],16);

    sprintf(info[3], "%.3fA", current[0]/1000.0f);
    sprintf(info[4], "%.3fA", current[1]/1000.0f);
    sprintf(info[5], "%.3fA", current[2]/1000.0f);
    OLED_ShowString(80,0,info[3],16);
    OLED_ShowString(80,2,info[4],16);
    OLED_ShowString(80,4,info[5],16);

    HAL_GPIO_TogglePin(LED_GPIO_Port,LED_Pin);
    HAL_Delay(100);
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

六、效果展示

七、驱动附录

ina3221.h

cpp 复制代码
#ifndef INA3221_H
#define INA3221_H


#include"i2c.h"
#include "stdint.h"
#include "main.h"


typedef struct
{
	uint8_t address;
	uint16_t data;
}INA3221_regType;

typedef enum
{
	CH1,
	CH2,
	CH3,
}INA3221_SHUNTChannelType;

/**
 * prepare for mask enable register
 */
typedef struct
{
	uint8_t CF1;
	uint8_t CF2;
	uint8_t CF3;
	uint8_t WF1;
	uint8_t WF2;
	uint8_t WF3;
}INA3221_FlagType;


extern INA3221_regType dieID;
extern INA3221_regType mask_enable;

extern INA3221_regType volt1;
extern INA3221_regType shunt1;
extern INA3221_regType volt2;
extern INA3221_regType shunt2;
extern INA3221_regType volt3;
extern INA3221_regType shunt3;


extern uint32_t current[3];
extern uint16_t voltage[3];

extern INA3221_FlagType INA3221_flag;

void INA3221_Config();
void INA3221_Init();
void INA3221_Reset();
void INA3221_ReadDieID();
void INA3221_ReadmanufactID();
void INA3221_GetVolt();
void INA3221_GetCurrent();

#endif

ina3221.c

cpp 复制代码
#include "INA3221.h"

#define INA3321_I2C &hi2c1
#define INA3221_I2C_ADDRESS 0x80

/*shunt resistor mohm*/
#define SHUNT_RESISTOR 			100

#define POWER_VALID_UPPER 		10000

#define POWER_VALID_LOWER 		9000

/**
 * register address table
 */
typedef enum
{
	SHUNT_CH1 = 0x01,
	VOLT_CH1,
	SHUNT_CH2,
	VOLT_CH2,
	SHUNT_CH3,
	VOLT_CH3,
	CRITICAL_CH1,
	WARNING_CH1,
	CRITICAL_CH2,
	WARNING_CH2,
	CRITICAL_CH3,
	WARNING_CH3,
	SHUNT_VOLT_SUM,
	SHUNT_VOLT_SUM_LIMIT,
	MASK_ENABLE,
	POWER_VALID_HIGH = 0x10,
	POWER_VALID_LOW,
}INA3221_RegAddressType;

/**
 * average samples
 */
typedef enum
{
	AVG_1,
	AVG_4,
	AVG_16,
	AVG_64,
	AVG_128,
	AVG_256,
	AVG_512,
	AVG_1024,
}INA3221_AVGType;

/**
 * average samples
 */
typedef enum
{
	CONV_TIME_140US,
	CONV_TIME_204US,
	CONV_TIME_332US,
	CONV_TIME_588US,
	CONV_TIME_1_1MS,
	CONV_TIME_2_116MS,
	CONV_TIME_4_156MS,
	CONV_TIME_8_244MS,
}INA3221_CTType;

/**
 * average samples
 */
typedef enum
{
	POWER_DOWN,
	SHUNT_SINGLE,
	BUS_SINGLE,
	SHUNT_BUS_SINGLE,
	POWER_DN,
	SHUNT_CONTINUOUS,
	BUS_CONTINUOUS,
	SHUNT_BUS_CONTINUOUS,
}INA3221_ModeType;


INA3221_regType cfg = {.address = 0};

INA3221_regType volt1 = {.address = VOLT_CH1};
INA3221_regType shunt1 = {.address = SHUNT_CH1};
INA3221_regType volt2 = {.address = VOLT_CH2};
INA3221_regType shunt2 = {.address = SHUNT_CH2};
INA3221_regType volt3 = {.address = VOLT_CH3};
INA3221_regType shunt3 = {.address = SHUNT_CH3};

INA3221_regType critical_ch1 = {.address = CRITICAL_CH1};
INA3221_regType critical_ch2 = {.address = CRITICAL_CH2};
INA3221_regType critical_ch3 = {.address = CRITICAL_CH3};
INA3221_regType warning_ch1 = {.address = WARNING_CH1};
INA3221_regType warning_ch2 = {.address = WARNING_CH2};
INA3221_regType warning_ch3 = {.address = WARNING_CH3};

INA3221_regType mask_enable = {.address = MASK_ENABLE};

INA3221_regType power_valid_upper = {.address = POWER_VALID_HIGH};
INA3221_regType power_valid_lower = {.address = POWER_VALID_LOW};

INA3221_regType manufactID = {.address = 0xFE};
INA3221_regType dieID = {.address = 0xFF};

/* store power voltage */
uint32_t current[3];
/* store power current */
uint16_t voltage[3];

INA3221_FlagType INA3221_flag;
/**
 * exchange data high and low byte for word variable
 */
static void DataReverse(uint16_t raw, uint16_t* cook);

/**
 * read register value
 */
static void INA3221_ReadReg(INA3221_regType *reg);

/**
 * write register value
 */
static void INA3221_WriteReg(INA3221_regType *reg);

/**
 * cacluate voltages from volt register value
 */
static void INA3221_Calculate_Volt(uint16_t* volt);

/**
 * cacluate currents from shunt register value
 */
static void INA3221_Calculate_Current(uint32_t* current);

/**
 * set limite value for current alert
 */
static void INA3221_SetLimit(INA3221_regType *reg, uint16_t volt);

/**
 * just read volt registers
 */
static void INA3221_Sample_Volt();

/**
 * just read shunt registers
 */
static void INA3221_Sample_Shunt();

static void DataReverse(uint16_t raw, uint16_t* cook)
{
   *cook = ((uint8_t)(raw) << 8) | (raw >> 8);
}

static void INA3221_ReadReg(INA3221_regType *reg)
{
   HAL_I2C_Mem_Read(INA3321_I2C, INA3221_I2C_ADDRESS, reg->address, 1, &reg->data, 2, 0xFFFF);
   DataReverse(reg->data, &reg->data);
}


static void INA3221_WriteReg(INA3221_regType *reg)
{
   DataReverse(reg->data, &reg->data);
   HAL_I2C_Mem_Write(INA3321_I2C, INA3221_I2C_ADDRESS, reg->address, 1, &reg->data, 2, 0xFFFF);
}


static void INA3221_Calculate_Volt(uint16_t* volt)
{
   *volt = volt1.data;
   *(volt + 1) = volt2.data;
   *(volt + 2) = volt3.data;
}

static void INA3221_Calculate_Current(uint32_t* current)
{
   current[0] = shunt1.data >> 3;
   /* 40uV per LSB */
   current[0] *= 4;
   current[0] = current[0] * 10 / SHUNT_RESISTOR;


   current[1] = shunt2.data >> 3;

   /* 40uV per LSB */
   current[1] *= 4;
   current[1] = current[1] * 10 / SHUNT_RESISTOR;


   current[2] = shunt3.data >> 3;

   /* 40uV per LSB */
   current[2] *= 4;
   current[2] = current[2] * 10 / SHUNT_RESISTOR;
}

static void INA3221_SetLimit(INA3221_regType *reg, uint16_t volt)
{
   reg->data = volt;
   INA3221_WriteReg(reg);
}

static void INA3221_Sample_Volt()
{
   INA3221_ReadReg(&volt1);
   INA3221_ReadReg(&volt2);
   INA3221_ReadReg(&volt3);
}

static void INA3221_Sample_Shunt()
{
   INA3221_ReadReg(&shunt1);
   INA3221_ReadReg(&shunt2);
   INA3221_ReadReg(&shunt3);
}

void INA3221_ReadDieID()
{
   INA3221_ReadReg(&dieID);
}

void INA3221_ReadmanufactID()
{
   INA3221_ReadReg(&manufactID);
}

void INA3221_GetVolt()
{
   INA3221_Sample_Volt();
   INA3221_Calculate_Volt(voltage);
}

void INA3221_GetCurrent()
{
   INA3221_Sample_Shunt();
   INA3221_Calculate_Current(current);
}

void INA3221_Config()
{
   /* read default register value from chip*/
   INA3221_ReadReg(&cfg);

   /* store it in config variable */
   cfg.data |= (cfg.data & !0x0E00) | (AVG_4 << 9);

   /*bus*/
   cfg.data |= (cfg.data & !0x01C0) | (CONV_TIME_2_116MS << 6);
   
   /*shunt*/
   cfg.data |= (cfg.data & !0x38) | (CONV_TIME_2_116MS << 3);

   /* wirte to register value */
   INA3221_WriteReg(&cfg);

   INA3221_ReadReg(&cfg);
}

void INA3221_Set_Critical(INA3221_SHUNTChannelType channel, uint16_t current)
{
   switch (channel)
   {
      case CH1:
      {
         /* 40uV per LSB */
         INA3221_SetLimit(&critical_ch1, (current * SHUNT_RESISTOR / 40) << 3);
         break;
      }
      case CH2:
      {
         INA3221_SetLimit(&critical_ch2, (current * SHUNT_RESISTOR / 40) << 3);
         break;
      }
      case CH3:
      {
         INA3221_SetLimit(&critical_ch3, (current * SHUNT_RESISTOR / 40) << 3);
         break;
      }
      default:
         break;
   }
}

void INA3221_Set_Warning(INA3221_SHUNTChannelType channel, uint16_t current)
{
   switch (channel)
   {
      case CH1:
      {
         INA3221_SetLimit(&warning_ch1, (current * SHUNT_RESISTOR / 40) << 3);
         break;
      }
      case CH2:
      {
         INA3221_SetLimit(&warning_ch2, (current * SHUNT_RESISTOR / 40) << 3);
         break;
      }
      case CH3:
      {
         INA3221_SetLimit(&warning_ch3, (current * SHUNT_RESISTOR / 40) << 3);
         break;
      }
      default:
         break;
   }
}

void INA3221_Reset()
{
   cfg.data = 0x8000;
   INA3221_WriteReg(&cfg);
}

void INA3221_Init()
{
   INA3221_ReadDieID();
   /* reset all registers */
   INA3221_Reset();

   INA3221_Config();
}

八、补充功能

INA3221还带可编程报警和警告输出

一、关键提示

会去比较每个通道的shunt电压值和相应的预设的值,用来判断是否发生过流

二、警告提示

会去比较每个通道的平均shunt电压值和相应的预设的值,用来判断是否发生过流

三、电源有效提示

芯片默认的PV上限是10V,下限是9V,都是可以改写的

意思是在外部高压输入的时候,如果三个通道的电压均高于10V,那么电源OK

如果电压降低,低于9V,电源不OK,模块的灯就会亮起来,因为这几个提示引脚都是开漏输出的

在外部高压输入的时候,如果有任意通道电压<10V,电源不OK,模块的灯就会亮起来,因为这几个提示引脚都是开漏输出的

如果电压升高,高于10V就可以了

有点像施密特触发器

可以把PV上拉到VPU去,这样电压就抬起来了,也可以在PV引脚和地直接串电阻来降压

模块的输入端子里有VPU,根据实际情况使用即可

四、时序控制提示

九、工程链接

STM32INA3221电压电流实时显示OLED工程资源-CSDN文库

相关推荐
析木不会编程2 小时前
【小白51单片机专用教程】protues仿真独立按键控制LED
单片机·嵌入式硬件·51单片机
枯无穷肉6 小时前
stm32制作CAN适配器4--WinUsb的使用
stm32·单片机·嵌入式硬件
不过四级不改名6776 小时前
基于HAL库的stm32的can收发实验
stm32·单片机·嵌入式硬件
嵌入式科普7 小时前
十一、从0开始卷出一个新项目之瑞萨RA6M5串口DTC接收不定长
c语言·stm32·cubeide·e2studio·ra6m5·dma接收不定长
嵌入式大圣7 小时前
单片机UDP数据透传
单片机·嵌入式硬件·udp
云山工作室7 小时前
基于单片机的视力保护及身姿矫正器设计(论文+源码)
stm32·单片机·嵌入式硬件·毕业设计·毕设
嵌入式-老费7 小时前
基于海思soc的智能产品开发(mcu读保护的设置)
单片机·嵌入式硬件
qq_397562319 小时前
MPU6050 , 设置内部低通滤波器,对于输出数据的影响。(简单实验)
单片机
liyinuo20179 小时前
嵌入式(单片机方向)面试题总结
嵌入式硬件·设计模式·面试·设计规范
艺术家天选9 小时前
STM32点亮LED灯
stm32·单片机·嵌入式硬件