目标检测一阶段模型

目标检测的基本思路:定位localization+识别recognition

  • 一个分支用于做图像分类,即全连接 + Softmax 判断目标类别,和单纯图像分类区别在于这里还另外需要一个「背景」类。
  • 另一个分支用于识别目标位置,即完成回归任务输出四个数字标记包围盒位置(例如中心点横纵坐标和包围盒长宽),该分支输出结果只有在分类分支判断不为「背景」时才使用

一阶段(One Stage )

不需要产生候选框,只需一次提取特征即可实现目标检测。直接将目标框定位的问题转化为回归(Regression)问题处理(Process)。

常见的算法有YOLO、SSD等等。

是怎么等效成回归问题的呢?

两阶段(Two Stages)

首先由算法(algorithm)生成一系列作为样本的候选框,再通过卷积神经网络进行分类。

常见的算法有 R-CNN、Fast R-CNN、Faster R-CNN 等等。

一阶段模型将目标检测看作端到端的回归问题,输入图片,输出五个结果**(x,y,w,h,score)+类别** ,其中score是框的置信度**,即该位置是否包含目标以及包含目标的准确性(IoU)。(x,y,w,h)是相对于Anchor的四个偏移量**

ssd输出

发展历程

目标检测模型对比:

Huang et al,"Speedlaccuracy trade-offs for modern convolutional object detectors", CVPR2017

相关推荐
孔令飞5 分钟前
关于 LLMOPS 的一些粗浅思考
人工智能·云原生·go
Lecea_L11 分钟前
你能在K步内赚最多的钱吗?用Java解锁最大路径收益算法(含AI场景分析)
java·人工智能·算法
2501_9071368214 分钟前
OfficeAI构建本地办公生态:WPS/Word双端联动,数据自由流转
人工智能·word·wps
飞哥数智坊19 分钟前
从零构建自己的MCP Server
人工智能
是Dream呀21 分钟前
ResNeXt: 通过聚合残差变换增强深度神经网络
人工智能·算法
项目申报小狂人32 分钟前
CUDA详细安装及环境配置——环境配置指南 – CUDA+cuDNN+PyTorch 安装
人工智能·pytorch·python
林泽毅32 分钟前
SwanLab Slack通知插件:让AI训练状态同步更及时
深度学习·机器学习·强化学习
suke1 小时前
一文秒懂AI核心:Agent、RAG、Function Call与MCP全解析
人工智能·程序员
大霸王龙1 小时前
LLM(语言学习模型)行为控制技术
python·深度学习·学习
oil欧哟1 小时前
😎 MCP 从开发到发布全流程介绍,看完不踩坑!
人工智能·typescript·node.js