目标检测一阶段模型

目标检测的基本思路:定位localization+识别recognition

  • 一个分支用于做图像分类,即全连接 + Softmax 判断目标类别,和单纯图像分类区别在于这里还另外需要一个「背景」类。
  • 另一个分支用于识别目标位置,即完成回归任务输出四个数字标记包围盒位置(例如中心点横纵坐标和包围盒长宽),该分支输出结果只有在分类分支判断不为「背景」时才使用

一阶段(One Stage )

不需要产生候选框,只需一次提取特征即可实现目标检测。直接将目标框定位的问题转化为回归(Regression)问题处理(Process)。

常见的算法有YOLO、SSD等等。

是怎么等效成回归问题的呢?

两阶段(Two Stages)

首先由算法(algorithm)生成一系列作为样本的候选框,再通过卷积神经网络进行分类。

常见的算法有 R-CNN、Fast R-CNN、Faster R-CNN 等等。

一阶段模型将目标检测看作端到端的回归问题,输入图片,输出五个结果**(x,y,w,h,score)+类别** ,其中score是框的置信度**,即该位置是否包含目标以及包含目标的准确性(IoU)。(x,y,w,h)是相对于Anchor的四个偏移量**

ssd输出

发展历程

目标检测模型对比:

Huang et al,"Speedlaccuracy trade-offs for modern convolutional object detectors", CVPR2017

相关推荐
Moshow郑锴1 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20251 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR2 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散133 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8243 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945193 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火4 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴5 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR6 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢6 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网