目标检测一阶段模型

目标检测的基本思路:定位localization+识别recognition

  • 一个分支用于做图像分类,即全连接 + Softmax 判断目标类别,和单纯图像分类区别在于这里还另外需要一个「背景」类。
  • 另一个分支用于识别目标位置,即完成回归任务输出四个数字标记包围盒位置(例如中心点横纵坐标和包围盒长宽),该分支输出结果只有在分类分支判断不为「背景」时才使用

一阶段(One Stage )

不需要产生候选框,只需一次提取特征即可实现目标检测。直接将目标框定位的问题转化为回归(Regression)问题处理(Process)。

常见的算法有YOLO、SSD等等。

是怎么等效成回归问题的呢?

两阶段(Two Stages)

首先由算法(algorithm)生成一系列作为样本的候选框,再通过卷积神经网络进行分类。

常见的算法有 R-CNN、Fast R-CNN、Faster R-CNN 等等。

一阶段模型将目标检测看作端到端的回归问题,输入图片,输出五个结果**(x,y,w,h,score)+类别** ,其中score是框的置信度**,即该位置是否包含目标以及包含目标的准确性(IoU)。(x,y,w,h)是相对于Anchor的四个偏移量**

ssd输出

发展历程

目标检测模型对比:

Huang et al,"Speedlaccuracy trade-offs for modern convolutional object detectors", CVPR2017

相关推荐
幂律智能1 小时前
幂律智能入选“AI100应用标杆”,赋能产业发展新范式
人工智能·百度
咚咚王者2 小时前
人工智能之数据分析 numpy:第十章 副本视图
人工智能·数据分析·numpy
Dev7z2 小时前
让阅卷不再繁琐:图像识别与数据分析提升智能答题卡评分效率
人工智能·计算机视觉
咚咚王者2 小时前
人工智能之数据分析 numpy:第十一章 字符串与字节交换
人工智能·数据分析·numpy
数字孪生家族4 小时前
视频孪生与空间智能:重构数字时空认知,定义智能决策新范式
人工智能·重构·空间智能·视频孪生与空间智能
FL171713145 小时前
Pytorch保存pt和pkl
人工智能·pytorch·python
jieshenai5 小时前
5090显卡,基于vllm完成大模型推理
人工智能·自然语言处理
逻极6 小时前
云智融合:AIGC与云计算服务新范式(深度解析)
人工智能·云计算·aigc·云服务
雪兽软件7 小时前
人工智能(AI)的商业模式创新路线图
人工智能