目标检测一阶段模型

目标检测的基本思路:定位localization+识别recognition

  • 一个分支用于做图像分类,即全连接 + Softmax 判断目标类别,和单纯图像分类区别在于这里还另外需要一个「背景」类。
  • 另一个分支用于识别目标位置,即完成回归任务输出四个数字标记包围盒位置(例如中心点横纵坐标和包围盒长宽),该分支输出结果只有在分类分支判断不为「背景」时才使用

一阶段(One Stage )

不需要产生候选框,只需一次提取特征即可实现目标检测。直接将目标框定位的问题转化为回归(Regression)问题处理(Process)。

常见的算法有YOLO、SSD等等。

是怎么等效成回归问题的呢?

两阶段(Two Stages)

首先由算法(algorithm)生成一系列作为样本的候选框,再通过卷积神经网络进行分类。

常见的算法有 R-CNN、Fast R-CNN、Faster R-CNN 等等。

一阶段模型将目标检测看作端到端的回归问题,输入图片,输出五个结果**(x,y,w,h,score)+类别** ,其中score是框的置信度**,即该位置是否包含目标以及包含目标的准确性(IoU)。(x,y,w,h)是相对于Anchor的四个偏移量**

ssd输出

发展历程

目标检测模型对比:

Huang et al,"Speedlaccuracy trade-offs for modern convolutional object detectors", CVPR2017

相关推荐
长相忆兮长相忆7 分钟前
【推荐算法】PRM重排模型:Personalized Re-ranking for Recommendation
深度学习·机器学习·推荐算法
没有梦想的咸鱼185-1037-16638 分钟前
【降尺度】基于统计方法与机器学习技术在气候降尺度中的实践应用
人工智能·机器学习·数据分析
skyfengye8 分钟前
DC2T:用于半监督跨站点持续分割的解缠引导整合与一致性训练
人工智能·计算机视觉
九河云16 分钟前
华为云能源行业云边协同:构筑新能源电站智能运维新基座
人工智能·华为云·数字化转型
SkyPhy - 格物智慧19 分钟前
英伟达收购SchedMD深度解析:完成AI基础设施垂直整合的最后一块拼图
人工智能
这张生成的图像能检测吗21 分钟前
(论文速读)RoShuNet:一个轻量级的基于卷积神经网络的可见图像特征提取器
人工智能·深度学习·计算机视觉·语义分割·目标追踪·分类模型
ApiHug23 分钟前
智能采购新革命:真惠采——让工业品采购降本增效双突破
大数据·人工智能
得贤招聘官36 分钟前
告别“感觉选人”:AI重构招聘的效率、精准与体验闭环
人工智能·重构
Jerryhut38 分钟前
Opencv总结2——图像金字塔与轮廓检测
人工智能·opencv·计算机视觉
数字孪生家族39 分钟前
视频+数字孪生技术在隧道智慧综合管控平台中的典型应用
人工智能·视频孪生技术·智慧隧道建设·数字孪生交通·空间智能应用