目标检测一阶段模型

目标检测的基本思路:定位localization+识别recognition

  • 一个分支用于做图像分类,即全连接 + Softmax 判断目标类别,和单纯图像分类区别在于这里还另外需要一个「背景」类。
  • 另一个分支用于识别目标位置,即完成回归任务输出四个数字标记包围盒位置(例如中心点横纵坐标和包围盒长宽),该分支输出结果只有在分类分支判断不为「背景」时才使用

一阶段(One Stage )

不需要产生候选框,只需一次提取特征即可实现目标检测。直接将目标框定位的问题转化为回归(Regression)问题处理(Process)。

常见的算法有YOLO、SSD等等。

是怎么等效成回归问题的呢?

两阶段(Two Stages)

首先由算法(algorithm)生成一系列作为样本的候选框,再通过卷积神经网络进行分类。

常见的算法有 R-CNN、Fast R-CNN、Faster R-CNN 等等。

一阶段模型将目标检测看作端到端的回归问题,输入图片,输出五个结果**(x,y,w,h,score)+类别** ,其中score是框的置信度**,即该位置是否包含目标以及包含目标的准确性(IoU)。(x,y,w,h)是相对于Anchor的四个偏移量**

ssd输出

发展历程

目标检测模型对比:

Huang et al,"Speedlaccuracy trade-offs for modern convolutional object detectors", CVPR2017

相关推荐
java_heartLake1 小时前
基于deepseek的AI知识库系统搭建
人工智能·deepseek
阿里云云原生2 小时前
山石网科×阿里云通义灵码,开启研发“AI智造”新时代
网络·人工智能·阿里云·ai程序员·ai程序员体验官
diemeng11193 小时前
AI前端开发技能变革时代:效率与创新的新范式
前端·人工智能
有Li3 小时前
跨中心模型自适应牙齿分割|文献速递-医学影像人工智能进展
人工智能
牧歌悠悠7 小时前
【深度学习】Unet的基础介绍
人工智能·深度学习·u-net
坚毅不拔的柠檬柠檬8 小时前
AI革命下的多元生态:DeepSeek、ChatGPT、XAI、文心一言与通义千问的行业渗透与场景重构
人工智能·chatgpt·文心一言
坚毅不拔的柠檬柠檬8 小时前
2025:人工智能重构人类文明的新纪元
人工智能·重构
jixunwulian8 小时前
DeepSeek赋能AI边缘计算网关,开启智能新时代!
人工智能·边缘计算
Archie_IT8 小时前
DeepSeek R1/V3满血版——在线体验与API调用
人工智能·深度学习·ai·自然语言处理
大数据追光猿8 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法