基于人脸识别PCA算法matlab实现及详细步骤讲解

人脸识别

% FaceRec.m

% PCA 人脸识别修订版,识别率88%

% calc xmean,sigma and its eigen decomposition

allsamples=[];%所有训练图像

for i=1:40

for j=1:5

a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));

% imshow(a);

b=a(1:112*92); % b 是行矢量 1×N,其中N=10304,提取顺序是先列后行,即从上

到下,从左到右

b=double(b);

allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数

据代表一张图片,其中M=200

end

end

samplemean=mean(allsamples); % 平均图片,1 × N

for i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean

每一行保存的数据是"每个图片数据-平均图片"

end;

% 获取特征值及特征向量

sigma=xmean*xmean'; % M * M 阶矩阵

[v d]=eig(sigma);

d1=diag(d);

% 按特征值大小以降序排列

dsort = flipud(d1);

vsort = fliplr(v);

%以下选择90%的能量

dsum = sum(dsort);

dsum_extract = 0;

p = 0;

while( dsum_extract/dsum < 0.9)

p = p + 1;

dsum_extract = sum(dsort(1:p));

end

i=1;

% (训练阶段)计算特征脸形成的坐标系

base = xmean' * vsort(:,1:p) * diag(dsort(1:p).^(-1/2));

% base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1)

% 详见《基于PCA 的人脸识别算法研究》p31

% xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程

%while (i<=p && dsort(i)>0)

% base(:,i) = dsort(i)^(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以dsort(i)^(1/2)

是对人脸图像的标准化(使其方差为1)

% 详见《基于PCA 的人脸识别算法研究》p31

% i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特

征向量转换的过程

%end

% 以下两行add by gongxun 将训练样本对坐标系上进行投影,得到一个 M*p 阶矩阵allcoor

allcoor = allsamples * base; % allcoor 里面是每张训练人脸图片在M*p 子空间中的一个点,

即在子空间中的组合系数,

accu = 0; % 下面的人脸识别过程中就是利用这些组合系数来进行识别

% 测试过程

for i=1:40

for j=6:10 %读入40 x 5 副测试图像

a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));

b=a(1:10304);

b=double(b);

tcoor= b * base; %计算坐标,是1×p 阶矩阵

for k=1:200

mdist(k)=norm(tcoor-allcoor(k,:));

end;

%三阶近邻

[dist,index2]=sort(mdist);

class1=floor( (index2(1)-1)/5 )+1;

class2=floor((index2(2)-1)/5)+1;

class3=floor((index2(3)-1)/5)+1;

if class1~=class2 && class2~=class3

class=class1;

elseif class1==class2

class=class1;

elseif class2==class3

class=class2;

end;

if class==i

accu=accu+1;

end;

end;

end;

accuracy=accu/200 %输出识别率

特征人脸

% eigface.m

function [] = eigface()

% calc xmean,sigma and its eigen decomposition

allsamples=[];%所有训练图像

for i=1:40

for j=1:5

a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));

% imshow(a);

b=a(1:112*92); % b 是行矢量 1×N,其中N=10304,提取顺序是先列后行,即从上

到下,从左到右

b=double(b);

allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数

据代表一张图片,其中M=200

end

end

samplemean=mean(allsamples); % 平均图片,1 × N

for i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean

每一行保存的数据是"每个图片数据-平均图片"

end;

% 获取特征值及特征向量

dsort = flipud(d1);

vsort = fliplr(v);

%以下选择90%的能量

dsum = sum(dsort);

dsum_extract = 0;

p = 0;

while( dsum_extract/dsum < 0.9)

p = p + 1;

dsum_extract = sum(dsort(1:p));

end

p = 199;

% (训练阶段)计算特征脸形成的坐标系

%while (i<=p && dsort(i)>0)

% base(:,i) = dsort(i)^(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以

dsort(i)^(1/2)是对人脸图像的标准化,详见《基于PCA 的人脸识别算法研究》p31

% i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩

阵特征向量转换的过程

%end

base = xmean' * vsort(:,1:p) * diag(dsort(1:p).^(-1/2));

% 生成特征脸

for (k=1:p),

temp = reshape(base(:,k), 112,92);

newpath = ['d:\test\' int2str(k) '.jpg'];

imwrite(mat2gray(temp), newpath);

end

avg = reshape(samplemean, 112,92);

imwrite(mat2gray(avg), 'd:\test\average.jpg');

% 将模型保存

save('e:\ORL\model.mat', 'base', 'samplemean');

人脸重建

% Reconstruct.m

function [] = reconstruct()

load e:\ORL\model.mat;

% 计算新图片在特征子空间中的系数

img = 'D:\test2\10.jpg'

a=imread(img);

b=a(1:112*92); % b 是行矢量 1×N,其中N=10304,提取顺序是先列后行,即从上到下,

从左到右

b=double(b);

b=b-samplemean;

c = b * base; % c 是图片a 在子空间中的系数, 是1*p 行矢量

% 根据特征系数及特征脸重建图

% 前15 个

t = 15;

temp = base(:,1:t) * c(1:t)';

temp = temp + samplemean';

imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t1.jpg');

% 前50 个

t = 50;

temp = base(:,1:t) * c(1:t)';

temp = temp + samplemean';

imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t2.jpg');

% 前100 个

t = 100;

temp = base(:,1:t) * c(1:t)';

temp = temp + samplemean';

imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t3.jpg');

% 前150 个

t = 150;

temp = base(:,1:t) * c(1:t)';

temp = temp + samplemean';

imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t4.jpg');

% 前199 个

t = 199;

temp = base(:,1:t) * c(1:t)';

temp = temp + samplemean';

imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t5.jpg');

相关推荐
觅远7 分钟前
python实现word转html
python·html·word
开放知识图谱13 分钟前
论文浅尝 | HippoRAG:神经生物学启发的大语言模型的长期记忆(Neurips2024)
人工智能·语言模型·自然语言处理
威化饼的一隅16 分钟前
【多模态】swift-3框架使用
人工智能·深度学习·大模型·swift·多模态
悠然的笔记本33 分钟前
python2和python3的区别
python
人类群星闪耀时38 分钟前
大模型技术优化负载均衡:AI驱动的智能化运维
运维·人工智能·负载均衡
编码小哥38 分钟前
通过opencv加载、保存视频
人工智能·opencv
机器学习之心41 分钟前
BiTCN-BiGRU基于双向时间卷积网络结合双向门控循环单元的数据多特征分类预测(多输入单输出)
深度学习·分类·gru
发呆小天才O.oᯅ1 小时前
YOLOv8目标检测——详细记录使用OpenCV的DNN模块进行推理部署C++实现
c++·图像处理·人工智能·opencv·yolo·目标检测·dnn
西猫雷婶1 小时前
python学opencv|读取图像(十六)修改HSV图像HSV值
开发语言·python·opencv
lovelin+v175030409661 小时前
智能电商:API接口如何驱动自动化与智能化转型
大数据·人工智能·爬虫·python