meta-learning based FD论文阅读笔记

[1]Semi-Supervised Temporal Meta-Learning Framework for Wind Turbine Bearing Fault Diagnosis Under Limited Annotation Data

问题背景

  1. the fault data are so scarce that it is time-consuming to acquire a well behaved deep learning model
  2. much unlabeled data cannot be adequately utilized to explore useful fault information without prior.

方法思路

(1)a temporal convolutional module is proposed to relieve overfitting due to the depth of the model, which can fully excavate temporal features along the depth of the network.

(2)A novel deep learning generalization framework SeMeF---is proposed to make full use of massive unlabeled data and limited annotation data.

[2] A Meta-Learning Method for Electric Machine Bearing Fault Diagnosis Under Varying Working Conditions With Limited Data

问题背景

perform FD with a limited training data

方法思路

(1)a four layer CNN is used for feature learning and a simple convolution structure makes the training more effcient

(2) The meta-training process primarily completes the knowledge accumulation of prior tasks.

[3] Semi-supervised adaptive anti-noise meta-learning for few-shot industrial gearbox fault diagnosis

问题背景

obtain sufficient labeled data for FD is challenging

方法思路

(1)a residual network with a Morlet Wavelet layer is used to extract signal features

(2)sample-level attention is defined to select unlabeled samples that are more similar to labeled sample prototypes

(3)The adaptive metric is used to obtain the relational distance functions of labeled samples and unlabeled samples

相关推荐
2***574239 分钟前
人工智能在智能投顾中的算法
人工智能·算法
草莓熊Lotso44 分钟前
《算法闯关指南:动态规划算法--斐波拉契数列模型》--01.第N个泰波拉契数,02.三步问题
开发语言·c++·经验分享·笔记·其他·算法·动态规划
草莓熊Lotso2 小时前
Git 分支管理:从基础操作到协作流程(本地篇)
大数据·服务器·开发语言·c++·人工智能·git·sql
youngfengying2 小时前
Swin Transformer
人工智能·深度学习·transformer
User_芊芊君子2 小时前
光影协同:基于Rokid CXR-M SDK构建工业级远程专家协作维修系统
人工智能
摘星编程2 小时前
AI文物复活馆:基于 AiOnly 一键调用 Claude 4.5 + Gemini 3 Pro 的多模态复原神器
人工智能·aionly
AI绘画哇哒哒3 小时前
【收藏必看】大模型智能体六大设计模式详解:从ReAct到Agentic RAG,构建可靠AI系统
人工智能·学习·ai·语言模型·程序员·产品经理·转行
CNRio4 小时前
人工智能基础架构与算力之3 Transformer 架构深度解析:从注意力机制到算力适配演进
人工智能·深度学习·transformer
qy-ll4 小时前
深度学习——CNN入门
人工智能·深度学习·cnn
青瓷程序设计7 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习