Spark中的宽窄依赖-宽窄巷子

1、什么是依赖关系?

2、什么是宽窄依赖?

窄依赖:Narrow Dependencies

定义:父RDD的一个分区的数据只给了子RDD的一个分区 【 不用经过Shuffle

特点:一对一或者多对一不经过Shuffle,性能相对较快, 但无法实现全局分区、排序、分组等

一个Stage内部的计算都是窄依赖的过程,全部在内存中 完成。

宽依赖:Wide/Shuffle Dependencies

定义:父RDD的一个分区的数据给了子RDD的多个分区【需要调用Shuffle的分区器来实现】

特点:一对多,必须经过Shuffle,性能相对较慢,可以实现全 局分区、排序、分组等

Spark的job中按照宽依赖来划分 Stage

本质:只是一种标记,标记两个RDD之间的依赖关系

3、为什么要标记宽窄关系?

宽窄依赖是在说哪个算子是宽哪个算子是窄吗?不是,说的是两个算子之间的关系。

1)提高数据容错的性能,避免分区数据丢失时,需要重新构建整个RDD

场景:如果子RDD的某个分区的数据丢失

不标记:不清楚父RDD与子RDD数据之间的关系,必须重新构建整个父RDD所有数据

标记了:父RDD一个分区只对应子RDD的一个分区,按照对应关系恢复父RDD的对应分区即可

2)提高数据转换的性能,将连续窄依赖操作使用同一个Task都放在内存中直接转换

算子之间,能在内存中转换的就在内存中转换,效率高,碰到需要shuffler的算子,就只能把数据放在磁盘,让shuffer算子,去拉取数据,效率低,如果不标记,怎么知道哪些算子需要shuffer呢?

场景:如果RDD需要多个map、flatMap、filter、 reduceByKey、sortByKey等算子的转换操作

不标记:每个转换不知道会不会经过Shuffle,都使用不同的 Task来完成,每个Task的结果要保存到磁盘

标记了:多个连续窄依赖算子放在一个Stage中,共用一套 Task在内存中完成所有转换,性能更快。

相关推荐
千匠网络1 分钟前
S2B供应链平台:优化资源配置,推动产业升级
大数据·人工智能·产品运营·供应链·s2b
WX-bisheyuange6 分钟前
基于Spring Boot的智慧校园管理系统设计与实现
java·大数据·数据库·毕业设计
AI营销快线38 分钟前
AI如何每日自动生成大量高质量营销素材?
大数据·人工智能
KKKlucifer1 小时前
从 “人工标注” 到 “AI 驱动”:数据分类分级技术的效率革命
大数据·人工智能·分类
天远云服1 小时前
Spring Boot 金融实战:如何清洗天远API的 KV 数组格式风控数据
大数据·api
哈哈哈笑什么1 小时前
企业级高并发分布式SpringCloud系统下,订单动态超时自动取消(最终成熟方案),使用spring-cloud-starter-stream-rabbit
分布式·spring cloud·rabbitmq
哈哈哈笑什么1 小时前
Sleuth+Zipkin 与 OpenSearch 结合是企业级分布式高并发系统的“王炸组合”
分布式·后端·spring cloud
我爱鸢尾花1 小时前
第十四章聚类方法理论及Python实现
大数据·python·机器学习·数据挖掘·数据分析·聚类
阿里云大数据AI技术2 小时前
活动报名 | Apache Spark Meetup · 上海站,助力企业构建高效数据平台
spark
数据猿3 小时前
【金猿人物展】涛思数据创始人、CEO陶建辉:实现AI时代时序数据库向“数据平台”的转型
大数据·数据库·人工智能·时序数据库·涛思数据