Spark中的宽窄依赖-宽窄巷子

1、什么是依赖关系?

2、什么是宽窄依赖?

窄依赖:Narrow Dependencies

定义:父RDD的一个分区的数据只给了子RDD的一个分区 【 不用经过Shuffle

特点:一对一或者多对一不经过Shuffle,性能相对较快, 但无法实现全局分区、排序、分组等

一个Stage内部的计算都是窄依赖的过程,全部在内存中 完成。

宽依赖:Wide/Shuffle Dependencies

定义:父RDD的一个分区的数据给了子RDD的多个分区【需要调用Shuffle的分区器来实现】

特点:一对多,必须经过Shuffle,性能相对较慢,可以实现全 局分区、排序、分组等

Spark的job中按照宽依赖来划分 Stage

本质:只是一种标记,标记两个RDD之间的依赖关系

3、为什么要标记宽窄关系?

宽窄依赖是在说哪个算子是宽哪个算子是窄吗?不是,说的是两个算子之间的关系。

1)提高数据容错的性能,避免分区数据丢失时,需要重新构建整个RDD

场景:如果子RDD的某个分区的数据丢失

不标记:不清楚父RDD与子RDD数据之间的关系,必须重新构建整个父RDD所有数据

标记了:父RDD一个分区只对应子RDD的一个分区,按照对应关系恢复父RDD的对应分区即可

2)提高数据转换的性能,将连续窄依赖操作使用同一个Task都放在内存中直接转换

算子之间,能在内存中转换的就在内存中转换,效率高,碰到需要shuffler的算子,就只能把数据放在磁盘,让shuffer算子,去拉取数据,效率低,如果不标记,怎么知道哪些算子需要shuffer呢?

场景:如果RDD需要多个map、flatMap、filter、 reduceByKey、sortByKey等算子的转换操作

不标记:每个转换不知道会不会经过Shuffle,都使用不同的 Task来完成,每个Task的结果要保存到磁盘

标记了:多个连续窄依赖算子放在一个Stage中,共用一套 Task在内存中完成所有转换,性能更快。

相关推荐
武子康43 分钟前
Java-72 深入浅出 RPC Dubbo 上手 生产者模块详解
java·spring boot·分布式·后端·rpc·dubbo·nio
橘子在努力4 小时前
【橘子分布式】Thrift RPC(理论篇)
分布式·网络协议·rpc
lifallen6 小时前
Kafka 时间轮深度解析:如何O(1)处理定时任务
java·数据结构·分布式·后端·算法·kafka
liupenglove6 小时前
自动驾驶数据仓库:时间片合并算法。
大数据·数据仓库·算法·elasticsearch·自动驾驶
沈健_算法小生9 小时前
基于SpringBoot3集成Kafka集群
分布式·kafka·linq
全能搬运大师9 小时前
win10安装Elasticsearch
大数据·elasticsearch·搜索引擎
Swift社区9 小时前
ELK、Loki、Kafka 三种日志告警联动方案全解析(附实战 Demo)
分布式·elk·kafka
Guheyunyi10 小时前
电气安全监测系统:筑牢电气安全防线
大数据·运维·网络·人工智能·安全·架构
BigData共享10 小时前
StarRocks fragment的执行流程
大数据
阿里云大数据AI技术11 小时前
阿里云 EMR Serverless Spark: 面向 Data+AI 的高性能 Lakehouse 产品
大数据·人工智能·数据分析