Spark中的宽窄依赖-宽窄巷子

1、什么是依赖关系?

2、什么是宽窄依赖?

窄依赖:Narrow Dependencies

定义:父RDD的一个分区的数据只给了子RDD的一个分区 【 不用经过Shuffle

特点:一对一或者多对一不经过Shuffle,性能相对较快, 但无法实现全局分区、排序、分组等

一个Stage内部的计算都是窄依赖的过程,全部在内存中 完成。

宽依赖:Wide/Shuffle Dependencies

定义:父RDD的一个分区的数据给了子RDD的多个分区【需要调用Shuffle的分区器来实现】

特点:一对多,必须经过Shuffle,性能相对较慢,可以实现全 局分区、排序、分组等

Spark的job中按照宽依赖来划分 Stage

本质:只是一种标记,标记两个RDD之间的依赖关系

3、为什么要标记宽窄关系?

宽窄依赖是在说哪个算子是宽哪个算子是窄吗?不是,说的是两个算子之间的关系。

1)提高数据容错的性能,避免分区数据丢失时,需要重新构建整个RDD

场景:如果子RDD的某个分区的数据丢失

不标记:不清楚父RDD与子RDD数据之间的关系,必须重新构建整个父RDD所有数据

标记了:父RDD一个分区只对应子RDD的一个分区,按照对应关系恢复父RDD的对应分区即可

2)提高数据转换的性能,将连续窄依赖操作使用同一个Task都放在内存中直接转换

算子之间,能在内存中转换的就在内存中转换,效率高,碰到需要shuffler的算子,就只能把数据放在磁盘,让shuffer算子,去拉取数据,效率低,如果不标记,怎么知道哪些算子需要shuffer呢?

场景:如果RDD需要多个map、flatMap、filter、 reduceByKey、sortByKey等算子的转换操作

不标记:每个转换不知道会不会经过Shuffle,都使用不同的 Task来完成,每个Task的结果要保存到磁盘

标记了:多个连续窄依赖算子放在一个Stage中,共用一套 Task在内存中完成所有转换,性能更快。

相关推荐
humors2218 分钟前
倪海厦讲解眼睛
大数据·程序人生
edisao11 分钟前
四。SpaceX、网络化与未来的跨越:低成本、高频次的真正威胁
大数据·开发语言·人工智能·科技·php
瑞华丽PLM15 分钟前
PLM系统中的BOM管理演进:从数据孤岛到全生命周期协同
大数据·人工智能·plm·国产plm·瑞华丽plm·瑞华丽
电商API_1800790524721 分钟前
1688商品详情采集API全解析:技术原理、实操指南与业务落地
大数据·前端·人工智能·网络爬虫
tiger11924 分钟前
AI Agent 如何从演示到生产
大数据·大模型·提示词·ai agent
叫我:松哥28 分钟前
基于Flask框架开发的二手房数据分析与推荐管理平台,集成大数据分析、机器学习预测和智能推荐技术
大数据·python·深度学习·机器学习·数据分析·flask
Coder_Boy_36 分钟前
基于SpringAI的在线考试系统-DDD(领域驱动设计)核心概念及落地架构全总结
java·大数据·人工智能·spring boot·架构·ddd·tdd
七夜zippoe1 小时前
Elasticsearch核心概念与Java客户端实战 构建高性能搜索服务
java·大数据·elasticsearch·集群·索引·分片
vx_bisheyuange1 小时前
基于SpringBoot的知识竞赛系统
大数据·前端·人工智能·spring boot·毕业设计
少许极端1 小时前
Redis入门指南(六):从零到分布式缓存-数据持久化与事务
redis·分布式·缓存·事务·持久化