开源模型应用落地-glm模型小试-glm-4-9b-chat-Gradio集成(三)

一、前言

GLM-4是智谱AI团队于2024年1月16日发布的基座大模型,旨在自动理解和规划用户的复杂指令,并能调用网页浏览器。其功能包括数据分析、图表创建、PPT生成等,支持128K的上下文窗口,使其在长文本处理和精度召回方面表现优异,且在中文对齐能力上超过GPT-4。与之前的GLM系列产品相比,GLM-4在各项性能上提高了60%,并且在指令跟随和多模态功能上有显著强化,适合于多种应用场景。尽管在某些领域仍逊于国际一流模型,GLM-4的中文处理能力使其在国内大模型中占据领先地位。该模型的研发历程自2020年始,经过多次迭代和改进,最终构建出这一高性能的AI系统。

开源模型应用落地-glm模型小试-glm-4-9b-chat-快速体验(一)已经掌握了glm-4-9b-chat的基本入门。

开源模型应用落地-glm模型小试-glm-4-9b-chat-批量推理(二)已经掌握了glm-4-9b-chat的批量推理。

本篇将介绍如何集成Gradio进行页面交互。


二、术语

**2.1.**GLM-4-9B

是智谱 AI 推出的一个开源预训练模型,属于 GLM-4 系列。它于 2024 年 6 月 6 日发布,专为满足高效能语言理解和生成任务而设计,并支持最高 1M(约两百万字)的上下文输入。该模型拥有更强的基础能力,支持26种语言,并且在多模态能力上首次实现了显著进展。

GLM-4-9B的基础能力包括:

  • 中英文综合性能提升 40%,在特别的中文对齐能力、指令遵从和工程代码等任务中显著增强

  • 较 Llama 3 8B 的性能提升,尤其在数学问题解决和代码编写等复杂任务中表现优越

  • 增强的函数调用能力,提升了 40% 的性能

  • 支持多轮对话,还支持网页浏览、代码执行、自定义工具调用等高级功能,能够快速处理大量信息并给出高质量的回答

**2.2.**GLM-4-9B-Chat

是智谱 AI 在 GLM-4-9B 系列中推出的对话版本模型。它设计用于处理多轮对话,并具有一些高级功能,使其在自然语言处理任务中更加高效和灵活。

**2.3.**Gradio

是一个用于构建交互式界面的Python库。它使得在Python中创建快速原型、构建和共享机器学习模型变得更加容易。

Gradio的主要功能是为机器学习模型提供一个即时的Web界面,使用户能够与模型进行交互,输入数据并查看结果,而无需编写复杂的前端代码。它提供了一个简单的API,可以将输入和输出绑定到模型的函数或方法,并自动生成用户界面。


三、前置条件

3.1.基础环境及前置条件

1. 操作系统:centos7

2. NVIDIA Tesla V100 32GB CUDA Version: 12.2

3.最低硬件要求

3.2.下载模型

huggingface:

https://huggingface.co/THUDM/glm-4-9b-chat/tree/main

ModelScope:

魔搭社区

使用git-lfs方式下载示例:

3.3.创建虚拟环境

bash 复制代码
conda create --name glm4 python=3.10
conda activate glm4

3.4.安装依赖库

bash 复制代码
pip install torch>=2.5.0
pip install torchvision>=0.20.0
pip install transformers>=4.46.0
pip install huggingface-hub>=0.25.1
pip install sentencepiece>=0.2.0
pip install jinja2>=3.1.4
pip install pydantic>=2.9.2
pip install timm>=1.0.9
pip install tiktoken>=0.7.0
pip install numpy==1.26.4 
pip install accelerate>=1.0.1
pip install sentence_transformers>=3.1.1
pip install gradio==4.44.1
pip install openai>=1.51.0
pip install einops>=0.8.0
pip install pillow>=10.4.0
pip install sse-starlette>=2.1.3
pip install bitsandbytes>=0.43.3

四、技术实现

4.1.集成Gradio

python 复制代码
# -*- coding: utf-8 -*-
from threading import Thread
import gradio as gr
import torch

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    StoppingCriteria,
    StoppingCriteriaList,
    TextIteratorStreamer
)

modelPath = "/data/model/glm-4-9b-chat"

def loadTokenizer():
    tokenizer = AutoTokenizer.from_pretrained(modelPath, trust_remote_code=True)
    return tokenizer

def loadModel():
    model = AutoModelForCausalLM.from_pretrained(
        modelPath,
        torch_dtype=torch.float16,
        trust_remote_code=True,
        device_map="auto").eval()
    return model

class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = model.config.eos_token_id
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False

def predict(history, prompt, max_length, top_p, temperature):
    stop = StopOnTokens()
    messages = []
    if prompt:
        messages.append({"role": "system", "content": prompt})
    for idx, (user_msg, model_msg) in enumerate(history):
        if prompt and idx == 0:
            continue
        if idx == len(history) - 1 and not model_msg:
            messages.append({"role": "user", "content": user_msg})
            break
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if model_msg:
            messages.append({"role": "assistant", "content": model_msg})

    model_inputs = tokenizer.apply_chat_template(messages,
                                                 add_generation_prompt=True,
                                                 tokenize=True,
                                                 return_tensors="pt").to(next(model.parameters()).device)
    streamer = TextIteratorStreamer(tokenizer, timeout=60, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = {
        "input_ids": model_inputs,
        "streamer": streamer,
        "max_new_tokens": max_length,
        "do_sample": True,
        "top_p": top_p,
        "temperature": temperature,
        "stopping_criteria": StoppingCriteriaList([stop]),
        "repetition_penalty": 1.2,
        "eos_token_id": model.config.eos_token_id,
    }
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    for new_token in streamer:
        if new_token:
            history[-1][1] += new_token
        yield history


with gr.Blocks() as demo:
    gr.HTML("""<h1 align="center">GLM-4-9B-CHAT DEMO</h1>""")
    chatbot = gr.Chatbot()

    with gr.Row():
        with gr.Column(scale=3):
            with gr.Column(scale=12):
                user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10, container=False)
            with gr.Column(min_width=32, scale=1):
                submitBtn = gr.Button("Submit")
        with gr.Column(scale=1):
            prompt_input = gr.Textbox(show_label=False, placeholder="Prompt", lines=10, container=False)
            pBtn = gr.Button("Set Prompt")
        with gr.Column(scale=1):
            emptyBtn = gr.Button("Clear History")
            max_length = gr.Slider(0, 32768, value=8192, step=1.0, label="Maximum length", interactive=True)
            top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
            temperature = gr.Slider(0.01, 1, value=0.6, step=0.01, label="Temperature", interactive=True)


    def user(query, history):
        return "", history + [[query, ""]]


    def set_prompt(prompt_text):
        return [[prompt_text, "成功设置prompt"]]


    pBtn.click(set_prompt, inputs=[prompt_input], outputs=chatbot)

    submitBtn.click(user, [user_input, chatbot], [user_input, chatbot], queue=False).then(
        predict, [chatbot, prompt_input, max_length, top_p, temperature], chatbot
    )
    emptyBtn.click(lambda: (None, None), None, [chatbot, prompt_input], queue=False)

if __name__ == '__main__':
    model = loadModel()
    tokenizer = loadTokenizer()
    
    demo.queue()
    demo.launch(server_name="0.0.0.0", server_port=7860, auth=("zhangsan", '123456'), width='70%')

启动结果:

调用结果:

一. 访问页面,账/密为上述代码示例中的zhangsan/123456

二.测试推理效果


五、附带说明

5.1.问题一: undefined symbol: __nvJitLinkComplete_12_4, version libnvJitLink.so.12

解决:

export LD_LIBRARY_PATH=/usr/local/miniconda3/envs/glm4/lib/python3.10/site-packages/nvidia/nvjitlink/lib:$LD_LIBRARY_PATH

**5.2.问题二:**Gradio界面无法打开

  1. 服务监听地址不能是127.0.0.1

  1. 检查服务器的安全策略或防火墙配置

服务端:lsof -i:8989 查看端口是否正常监听

客户端:telnet ip 8989 查看是否可以正常连接

相关推荐
吕小明么16 分钟前
OpenAI o3 “震撼” 发布后回归技术本身的审视与进一步思考
人工智能·深度学习·算法·aigc·agi
CSBLOG1 小时前
深度学习试题及答案解析(一)
人工智能·深度学习
小陈phd2 小时前
深度学习之超分辨率算法——SRCNN
python·深度学习·tensorflow·卷积
王国强20092 小时前
动手学人工智能-深度学习计算5-文件读写操作
深度学习
开放知识图谱3 小时前
论文浅尝 | HippoRAG:神经生物学启发的大语言模型的长期记忆(Neurips2024)
人工智能·语言模型·自然语言处理
威化饼的一隅3 小时前
【多模态】swift-3框架使用
人工智能·深度学习·大模型·swift·多模态
机器学习之心4 小时前
BiTCN-BiGRU基于双向时间卷积网络结合双向门控循环单元的数据多特征分类预测(多输入单输出)
深度学习·分类·gru
MorleyOlsen5 小时前
【Trick】解决服务器cuda报错——RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED
运维·服务器·深度学习
愚者大大7 小时前
1. 深度学习介绍
人工智能·深度学习
liuming19928 小时前
Halcon中histo_2dim(Operator)算子原理及应用详解
图像处理·人工智能·深度学习·算法·机器学习·计算机视觉·视觉检测