Milvus - GPU 索引类型及其应用场景

1. 背景概述

Milvus 是一款高效的矢量数据库管理系统,支持在高并发和高调用场景下加速相似度搜索。Milvus 的 GPU 支持由 NvidiaRAPIDS 团队提供,可以借助各种 GPU 索引类型来优化性能。本篇将重点解析 Milvus 支持的 GPU 索引类型、适用场景及各自的性能特点,并详细介绍如何配置和使用这些 GPU 索引,以帮助用户合理选择索引类型来提升系统吞吐量和召回率。

2. GPU 索引类型与性能分析

Milvus 支持多种 GPU 索引类型,包括 GPU_CAGRA、GPU_IVF_FLAT、GPU_IVF_PQ 和 GPU_BRUTE_FORCE,每种索引类型的优缺点和适用场景各不相同。

GPU_CAGRA
  • 特点:适用于高吞吐量查询场景,具有较高的召回率。

  • 适用场景:当面临大量并发请求或需要搜索大量向量时,GPU_CAGRA 是较为经济的选择,尤其适合推理级 GPU。

  • 配置与使用

    python 复制代码
    # 配置索引参数
    index_params = {
        "metric_type": "L2",
        "index_type": "GPU_CAGRA",
        "params": {
            "intermediate_graph_degree": 32,
            "graph_degree": 64,
            "build_algo": "IVF_PQ",
            "cache_dataset_on_device": "false"
        }
    }
    # 创建索引
    collection.create_index(field_name="embedding", index_params=index_params)
    • 搜索参数 :GPU_CAGRA 索引支持 itopk_sizesearch_width 等特有参数,用于控制搜索宽度和召回率。

      python 复制代码
      search_params = {
          "params": {
              "itopk_size": 64,
              "search_width": 4
          }
      }
      results = collection.search(data=query_vectors, anns_field="embedding", param=search_params, limit=top_K)
GPU_IVF_FLAT
  • 特点:该索引采用聚类和距离比较方式,对大型数据集有较快的查询速度。

  • 适用场景:适合需要低延迟但仍要求高召回率的场景,尤其在需要找到大致准确的相似结果时更具性价比。

  • 配置与使用

    python 复制代码
    # 配置索引参数
    index_params = {
        "metric_type": "L2",
        "index_type": "GPU_IVF_FLAT",
        "params": {
            "nlist": 128,
            "cache_dataset_on_device": "false"
        }
    }
    # 创建索引
    collection.create_index(field_name="embedding", index_params=index_params)
    • 搜索参数nprobe 控制访问的聚类数量,可以平衡查询速度和召回率。

      python 复制代码
      search_params = {
          "params": {
              "nprobe": 16
          }
      }
      results = collection.search(data=query_vectors, anns_field="embedding", param=search_params, limit=top_K)
GPU_IVF_PQ
  • 特点:通过乘积量化压缩向量存储空间,从而减少内存占用和计算时间。

  • 适用场景:适用于需要快速响应但能容忍一定精度损失的场景。

  • 配置与使用

    python 复制代码
    # 配置索引参数
    index_params = {
        "metric_type": "L2",
        "index_type": "GPU_IVF_PQ",
        "params": {
            "nlist": 128,
            "m": 4,  # 量化因子数
            "nbits": 8,
            "cache_dataset_on_device": "false"
        }
    }
    # 创建索引
    collection.create_index(field_name="embedding", index_params=index_params)
    • 搜索参数 :与 GPU_IVF_FLAT 类似,使用 nprobe 控制查询的准确性。

      python 复制代码
      search_params = {
          "params": {
              "nprobe": 8
          }
      }
      results = collection.search(data=query_vectors, anns_field="embedding", param=search_params, limit=top_K)
GPU_BRUTE_FORCE
  • 特点:该索引类型执行完全比较,保证召回率为 1,适合对召回率要求极高的场景。

  • 适用场景:当需要获得绝对精确的查询结果时,GPU_BRUTE_FORCE 是首选,但由于耗费大量计算资源,仅适合小规模数据集或查询数量有限的情况。

  • 配置与使用

    python 复制代码
    # 配置索引参数
    index_params = {
        "metric_type": "L2",
        "index_type": "GPU_BRUTE_FORCE"
    }
    # 创建索引
    collection.create_index(field_name="embedding", index_params=index_params)
    • 搜索参数 :只需设置 top-K 值,无需额外参数。

      python 复制代码
      results = collection.search(data=query_vectors, anns_field="embedding", limit=top_K)

3. 优化建议

使用 GPU 索引时,可以通过以下方式进一步优化性能:

  • 缓存原始数据 :如果内存允许,可以将 cache_dataset_on_device 设为 true,在 GPU 内存中缓存数据集以提升性能。
  • 参数调优 :根据业务场景和实际测试结果,调整 nlistnprobe 等参数,以在召回率和速度之间找到平衡点。

总结

在 Milvus 中使用 GPU 索引可以大幅提高搜索效率,不同的 GPU 索引在 Milvus 中有不同的适用场景和参数配置。合理选择和配置索引类型,结合业务场景的需求,可以在查询速度、召回率和内存占用之间找到最佳平衡。希望本篇内容能帮助您深入理解 Milvus 的 GPU 索引类型,为数据检索和查询优化提供参考。

相关推荐
范文杰5 小时前
AI 时代如何更高效开发前端组件?21st.dev 给了一种答案
前端·ai编程
阿坡RPA8 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049938 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心8 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI10 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
几米哥10 小时前
从思考到行动:AutoGLM沉思如何让AI真正"动"起来
llm·aigc·chatglm (智谱)
宁zz11 小时前
乌班图安装jenkins
运维·jenkins
凯子坚持 c11 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
大丈夫立于天地间11 小时前
ISIS协议中的数据库同步
运维·网络·信息与通信
你觉得20511 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc