cv::Mat初始化、赋值初始化与访问方式

初始化

常量赋值初始化

cpp 复制代码
cv::Mat m = (cv::Mat_<float>(3,1) << 1, 2, 1.0);

指定类型和大小的二维数组

cpp 复制代码
cv::Mat m(int rows, int cols, int type);
cv::Mat m(cv::Size sz, int type);

初始化值均为0

cpp 复制代码
//二维数组,类型CV_8UC3, 初始化值cv::Scalar(100, 1, 1)
cv::Mat mat = cv::Mat::zeros(int rows, int cols, CV_8UC3, cv::Scalar(100, 1, 1)); 
cv::Mat mat = cv::Mat::ones(rows, cols, CV_32F); // 全1
cv::Mat mat = cv::Mat::eye(rows, cols, CV_64F); // 单位矩阵

数组赋值

cpp 复制代码
char* data = new char[15];
cv::Mat m3(3, 5, CV_8UC1, data);
//或者, 数据位数对齐
cv::Mat m4(1, 5, CV_8UC3, data);
cv::Mat m6(cv::Size(3, 5), CV_8UC1, data);

指定类型多维数组

cpp 复制代码
 7、指定类型的多维数组
    cv::Mat m(int ndims, const int* sizes, int type);
    int size[3] = { 3, 2, 2 };
    cv::Mat m7(3, size, CV_8UC1);
    //多维赋值
 		int matSize2[] = { 2,2,2 };//每一维元素的个数:8:行,10:列
    char* data2 = new char[8];
    cv::Mat m9(3, matSize2, CV_8UC1, data2);
cpp 复制代码
//使用cv::Vec定义相同类型、大小为n的一维数组初始化
cv::Vec<float, 10> data1{ 1,2,3,4,5, 6,7,8,9,10 };
cv::Mat m1(data1, true);
//使用cv::Matx定义相同类型、大小为mxn的二维数组
cv::Matx<float, 2, 4> data2{ 1,2,3,4,5,6,7,7 };
cv::Mat m2(data2, true);
//使用STL vector定义相同类型的一维数组
std::vector<float> vec{1, 2, 3, 4, 5, 6};
cv::Mat m3(vec, true);

访问:

1、 at 访问

If matrix is of type CV_8U then use Mat.at<uchar >(y,x).

If matrix is of type CV_8S then use Mat.at<schar >(y,x).

If matrix is of type CV_16U then use Mat.at<ushort >(y,x).

If matrix is of type CV_16S then use Mat.at<short >(y,x).

If matrix is of type CV_32S then use Mat.at<int >(y,x).

If matrix is of type CV_32F then use Mat.at<float >(y,x).

If matrix is of type CV_64F then use Mat.at<double >(y,x).

If matrix is of type CV_8UC3 then use Mat.at<Vec3b>(y,x)[0]

优点:直观好理解

缺点:访问速度相对慢

2、ptr指针进行访问

cpp 复制代码
cvInitMatHeader(&mat,3,2,CV_32FC3,data);//3通道
int nChannels = 3;
for(int x=0;x<mat.rows;++x){
	float *p = (float *)(mat.data.ptr + x*mat.step);//指向每一行的起始位置
for(int y=0;y<mat.cols;++y){
		float value[3];
	 value[0] = *(p+y*nChannels);
	 value[1] = *(p+y*nChannels+1);
	 value[2] = *(p+y*nChannels+2);
	 }
 }
相关推荐
机器之心2 分钟前
拿走200多万奖金的AI人才,到底给出了什么样的技术方案?
人工智能·openai
摘星编程13 分钟前
CANN内存管理机制:从分配策略到性能优化
人工智能·华为·性能优化
likerhood20 分钟前
3. pytorch中数据集加载和处理
人工智能·pytorch·python
Robot侠21 分钟前
ROS1从入门到精通 10:URDF机器人建模(从零构建机器人模型)
人工智能·机器人·ros·机器人操作系统·urdf机器人建模
haiyu_y23 分钟前
Day 46 TensorBoard 使用介绍
人工智能·深度学习·神经网络
阿里云大数据AI技术27 分钟前
DataWorks 又又又升级了,这次我们通过 Arrow 列存格式让数据同步速度提升10倍!
大数据·人工智能
做科研的周师兄28 分钟前
中国土壤有机质数据集
人工智能·算法·机器学习·分类·数据挖掘
IT一氪30 分钟前
一款 AI 驱动的 Word 文档翻译工具
人工智能·word
lovingsoft33 分钟前
Vibe coding 氛围编程
人工智能
百***074538 分钟前
GPT-Image-1.5 极速接入全流程及关键要点
人工智能·gpt·计算机视觉