全卷积和全连接

全连接网络和全卷积网络不一样

以下是对两者的正确解释和代码示例:


1. 全连接网络(Fully Connected Network)

全连接网络使用的是 线性层nn.Linear),也就是我们常说的"全连接层"。它是用于将每一个输入节点与输出节点直接连接的网络结构。

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

class FullyConnectedNetwork(nn.Module):
    def __init__(self, input_size=128, hidden_size=64, output_size=10):
        super(FullyConnectedNetwork, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)  # 全连接层1
        self.fc2 = nn.Linear(hidden_size, hidden_size) # 全连接层2
        self.fc3 = nn.Linear(hidden_size, output_size) # 全连接层3

    def forward(self, x):
        x = F.relu(self.fc1(x))  # 激活函数
        x = F.relu(self.fc2(x))
        x = self.fc3(x)          # 输出层
        return x

# 测试
model = FullyConnectedNetwork()
input_data = torch.randn(32, 128)  # 输入为 (batch_size, 输入特征维度)
output = model(input_data)
print(output.shape)  # 输出形状: (32, 10)

这里的 nn.Linear 代表全连接层,每个神经元都与下一层的每个神经元直接相连。


2. 全卷积网络(Fully Convolutional Network)

全卷积网络则使用的是 卷积层nn.Conv2d),适用于图像或空间数据处理,不使用 nn.Linear。卷积层的好处在于可以捕获空间结构特征,同时能处理任意大小的输入。

以下是一个简单的全卷积网络示例:

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

class FullyConvolutionalNetwork(nn.Module):
    def __init__(self):
        super(FullyConvolutionalNetwork, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1)  # 卷积层1
        self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, padding=1) # 卷积层2
        self.conv3 = nn.Conv2d(in_channels=32, out_channels=10, kernel_size=3, padding=1) # 卷积层3

    def forward(self, x):
        x = F.relu(self.conv1(x))  # 激活函数
        x = F.relu(self.conv2(x))
        x = self.conv3(x)          # 输出层
        return x

# 测试
model = FullyConvolutionalNetwork()
input_data = torch.randn(32, 3, 64, 64)  # 输入为 (batch_size, 通道数, 高, 宽)
output = model(input_data)
print(output.shape)  # 输出形状: (32, 10, 64, 64)

在这里,nn.Conv2d 代表卷积层,它通过卷积操作提取空间特征,适合处理图像类的输入数据。


总结

  • 全连接网络 :使用 nn.Linear(线性层),适合用于固定大小的输入,通常用于特征向量或结构化数据。
  • 全卷积网络 :使用 nn.Conv2d(卷积层),适合处理图像和空间数据,可用于任意大小的输入。
相关推荐
阿里云大数据AI技术4 分钟前
Post-Training on PAI (3): 自研高性能强化学习框架PAI-ChatLearn
人工智能·开源·强化学习
二二孚日7 分钟前
自用华为ICT云赛道AI第三章知识点-MindSpore特性、MindSpore开发组件
人工智能·华为
水龙吟啸7 分钟前
从零开始搭建深度学习大厦系列-2.卷积神经网络基础(5-9)
人工智能·pytorch·深度学习·cnn·mxnet
杰夫贾维斯18 分钟前
CentOS Linux 8 的系统部署 Qwen2.5-7B -Instruct-AWQ
linux·运维·人工智能·机器学习·centos
m0_7033236718 分钟前
SEO外包服务甄选指南:避开陷阱,精准匹配
大数据·人工智能
金智维科技25 分钟前
多系统、跨流程、高重复?看烟草企业如何用数字员工撬动运营变革
人工智能
PyAIExplorer35 分钟前
图像处理中的边缘填充:原理与实践
图像处理·人工智能
AI大模型技术社1 小时前
🔥企业级必读:筛选高可用MCP服务的黄金标准
人工智能·mcp
zzywxc7871 小时前
AI技术通过提示词工程(Prompt Engineering)正在深度重塑职场生态和行业格局,这种变革不仅体现在效率提升,更在重构人机协作模式。
java·大数据·开发语言·人工智能·spring·重构·prompt
Java中文社群1 小时前
炸裂!Dify新版发布:内置MCP双向支持!
人工智能·后端