【TMM2024】Frequency-Guided Spatial Adaptation for Camouflaged Object Detection

论文链接:https://arxiv.org/abs/2409.12421

这个论文研究 Camouflaged Object Detection (COD)问题,作者认为,使用 pretrained foundation model 可以改进COD的准确率,但是当前的 adaptor 大多学习空间特征,对于纹理的细节变化缺乏适应性。因此,作者考虑在 adaptor 中加入频率域信息,论文的主要工作为设计了一个频率引导的空间注意模块( frequency-guided spatial attention module),使预训练的基础模型从空间域适应,同时由自适应调整的频率分量引导,更多地关注伪装区域。

模型的总体框架如下图所示,骨干是预训练的VIT模型,同时有两个模块做为adaptor进行微调(1)frequencybased nuances mining (FBNM);(2) frequency-based feature enhancement (FBFE)。

从图中可以看出,FBNM模块用于patch embedding之后,多使用卷积,获取目标与背景的细微差别。FBFE模块中使用很多cross-attention,作者解释可以获取一般知识和与任务相关的知识。

两个模块中都使用了Frequency-Guided Spatial Attention (FGSAttn),结构如下图所示。核心思路是把FFT变换以后的频率特征,拆分为一个个独立的 patch,给各个 patch 添加注意力。作者认为这样可以更好的关注目标。

其它部分可以参考作者论文,这里不过多介绍。

相关推荐
MaoziShan3 分钟前
CMU Subword Modeling | 11 Rules of realization and rules of referral
人工智能·语言模型·自然语言处理
phoenix@Capricornus16 分钟前
初等数学中点到直线的距离
人工智能·算法·机器学习
Fairy要carry24 分钟前
面试-冷启动
深度学习
田里的水稻31 分钟前
FA_规划和控制(PC)-快速探索随机树(RRT)
人工智能·算法·数学建模·机器人·自动驾驶
天才在此40 分钟前
AI时代:软件工程的诞生与死亡
人工智能·软件工程
tq108644 分钟前
幻亦幻,真更真
人工智能
阿杰学AI1 小时前
AI核心知识114—大语言模型之 AI Data Annotator(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·ai岗位·ai数据标注师
冬奇Lab1 小时前
一天一个开源项目(第28篇):Graphiti - 为 AI Agent 构建实时知识图谱
人工智能·aigc
liliangcsdn1 小时前
LLM如何让游戏交互或行为变得更有趣
人工智能