【TMM2024】Frequency-Guided Spatial Adaptation for Camouflaged Object Detection

论文链接:https://arxiv.org/abs/2409.12421

这个论文研究 Camouflaged Object Detection (COD)问题,作者认为,使用 pretrained foundation model 可以改进COD的准确率,但是当前的 adaptor 大多学习空间特征,对于纹理的细节变化缺乏适应性。因此,作者考虑在 adaptor 中加入频率域信息,论文的主要工作为设计了一个频率引导的空间注意模块( frequency-guided spatial attention module),使预训练的基础模型从空间域适应,同时由自适应调整的频率分量引导,更多地关注伪装区域。

模型的总体框架如下图所示,骨干是预训练的VIT模型,同时有两个模块做为adaptor进行微调(1)frequencybased nuances mining (FBNM);(2) frequency-based feature enhancement (FBFE)。

从图中可以看出,FBNM模块用于patch embedding之后,多使用卷积,获取目标与背景的细微差别。FBFE模块中使用很多cross-attention,作者解释可以获取一般知识和与任务相关的知识。

两个模块中都使用了Frequency-Guided Spatial Attention (FGSAttn),结构如下图所示。核心思路是把FFT变换以后的频率特征,拆分为一个个独立的 patch,给各个 patch 添加注意力。作者认为这样可以更好的关注目标。

其它部分可以参考作者论文,这里不过多介绍。

相关推荐
147API2 分钟前
60,000 星的代价:解析 OpenClaw 的架构设计与安全教训
人工智能·安全·aigc·clawdbot·moltbot·openclaw
audyxiao0015 分钟前
智能交通顶刊TITS论文分享|如何利用驾驶感知世界模型实现无信号灯路口自动驾驶?
人工智能·机器学习·自动驾驶·tits
lisw0510 分钟前
氛围炒股概述!
大数据·人工智能·机器学习
hjs_deeplearning10 分钟前
文献阅读篇#16:自动驾驶中的视觉语言模型:综述与展望
人工智能·语言模型·自动驾驶
爱喝可乐的老王1 小时前
PyTorch深度学习参数初始化和正则化
人工智能·pytorch·深度学习
杭州泽沃电子科技有限公司4 小时前
为电气风险定价:如何利用监测数据评估工厂的“电气安全风险指数”?
人工智能·安全
Godspeed Zhao6 小时前
自动驾驶中的传感器技术24.3——Camera(18)
人工智能·机器学习·自动驾驶
顾北127 小时前
MCP协议实战|Spring AI + 高德地图工具集成教程
人工智能
wfeqhfxz25887827 小时前
毒蝇伞品种识别与分类_Centernet模型优化实战
人工智能·分类·数据挖掘
中杯可乐多加冰8 小时前
RAG 深度实践系列(七):从“能用”到“好用”——RAG 系统优化与效果评估
人工智能·大模型·llm·大语言模型·rag·检索增强生成