【TMM2024】Frequency-Guided Spatial Adaptation for Camouflaged Object Detection

论文链接:https://arxiv.org/abs/2409.12421

这个论文研究 Camouflaged Object Detection (COD)问题,作者认为,使用 pretrained foundation model 可以改进COD的准确率,但是当前的 adaptor 大多学习空间特征,对于纹理的细节变化缺乏适应性。因此,作者考虑在 adaptor 中加入频率域信息,论文的主要工作为设计了一个频率引导的空间注意模块( frequency-guided spatial attention module),使预训练的基础模型从空间域适应,同时由自适应调整的频率分量引导,更多地关注伪装区域。

模型的总体框架如下图所示,骨干是预训练的VIT模型,同时有两个模块做为adaptor进行微调(1)frequencybased nuances mining (FBNM);(2) frequency-based feature enhancement (FBFE)。

从图中可以看出,FBNM模块用于patch embedding之后,多使用卷积,获取目标与背景的细微差别。FBFE模块中使用很多cross-attention,作者解释可以获取一般知识和与任务相关的知识。

两个模块中都使用了Frequency-Guided Spatial Attention (FGSAttn),结构如下图所示。核心思路是把FFT变换以后的频率特征,拆分为一个个独立的 patch,给各个 patch 添加注意力。作者认为这样可以更好的关注目标。

其它部分可以参考作者论文,这里不过多介绍。

相关推荐
勤奋的大熊猫几秒前
机器学习路径规划中的 net 和 netlist 分别是什么?
人工智能·机器学习·自动寻路
还有糕手2 分钟前
西南交通大学【机器学习实验6】
人工智能·机器学习
静心问道31 分钟前
self-consistency:自洽性提升语言模型中的链式思维推理能力
人工智能·语言模型·大模型
上海锝秉工控44 分钟前
防爆拉线位移传感器:工业安全的“隐形守护者”
大数据·人工智能·安全
m0_678693331 小时前
深度学习笔记29-RNN实现阿尔茨海默病诊断(Pytorch)
笔记·rnn·深度学习
胡耀超1 小时前
标签体系设计与管理:从理论基础到智能化实践的综合指南
人工智能·python·深度学习·数据挖掘·大模型·用户画像·语义分析
开-悟2 小时前
嵌入式编程-使用AI查找BUG的启发
c语言·人工智能·嵌入式硬件·bug
Ailerx2 小时前
YOLOv13震撼发布:超图增强引领目标检测新纪元
人工智能·yolo·目标检测
大咖分享课2 小时前
开源模型与商用模型协同开发机制设计
人工智能·开源·ai模型
你不知道我是谁?2 小时前
AI 应用于进攻性安全
人工智能·安全