【TMM2024】Frequency-Guided Spatial Adaptation for Camouflaged Object Detection

论文链接:https://arxiv.org/abs/2409.12421

这个论文研究 Camouflaged Object Detection (COD)问题,作者认为,使用 pretrained foundation model 可以改进COD的准确率,但是当前的 adaptor 大多学习空间特征,对于纹理的细节变化缺乏适应性。因此,作者考虑在 adaptor 中加入频率域信息,论文的主要工作为设计了一个频率引导的空间注意模块( frequency-guided spatial attention module),使预训练的基础模型从空间域适应,同时由自适应调整的频率分量引导,更多地关注伪装区域。

模型的总体框架如下图所示,骨干是预训练的VIT模型,同时有两个模块做为adaptor进行微调(1)frequencybased nuances mining (FBNM);(2) frequency-based feature enhancement (FBFE)。

从图中可以看出,FBNM模块用于patch embedding之后,多使用卷积,获取目标与背景的细微差别。FBFE模块中使用很多cross-attention,作者解释可以获取一般知识和与任务相关的知识。

两个模块中都使用了Frequency-Guided Spatial Attention (FGSAttn),结构如下图所示。核心思路是把FFT变换以后的频率特征,拆分为一个个独立的 patch,给各个 patch 添加注意力。作者认为这样可以更好的关注目标。

其它部分可以参考作者论文,这里不过多介绍。

相关推荐
PPT百科10 分钟前
创建实用PPT演讲者备注的有效方法
人工智能·经验分享·pdf·powerpoint·ppt
lilu88888883 小时前
AI代码生成器赋能房地产:ScriptEcho如何革新VR/AR房产浏览体验
前端·人工智能·ar·vr
梦云澜3 小时前
论文阅读(十六):利用线性链条件随机场模型检测阵列比较基因组杂交数据的拷贝数变异
深度学习
好评笔记3 小时前
多模态论文笔记——VDT
论文阅读·深度学习·机器学习·大模型·aigc·transformer·面试八股
好评笔记3 小时前
多模态论文笔记——ViViT
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer
梦云澜3 小时前
论文阅读(五):乳腺癌中的高斯图模型和扩展网络推理
论文阅读·人工智能·深度学习·学习
危险、4 小时前
Spring Boot 无缝集成SpringAI的函数调用模块
人工智能·spring boot·函数调用·springai
深度学习实战训练营5 小时前
基于迁移学习的ResNet50模型实现石榴病害数据集多分类图片预测
人工智能·分类·迁移学习
XianxinMao5 小时前
开源AI模型发布策略:平衡开放与质量的艺术
人工智能
Fxrain5 小时前
[Computer Vision]实验二:图像特征点提取
人工智能·计算机视觉