【深度学习】线性与非线性

线性:

一个函数或者模型满足以下两个条件,即可被称为线性(两个条件必须同时满足):

  1. 加法性质:f(x+y) = f(x) + f(y)
    对于函数来说,它意味着输入的和等于输出的和;对于模型来说,指的是模型对输入的和等于输出的和。
  2. 齐次性质:f(ax)=af(x)
    对于函数来说,它表示函数的放大或缩小操作;对于模型来说,指的是模型对输入的缩放等于输出的缩放。

非线性:

与线性相对,非线性则表示不能被上述加法性质和齐次性质所描述的函数或模型。在深度学习中,非线性很重要,因为通过引入非线性能够使得模型可以学习和表示更加复杂的关系。例如,在神经网络中,非线性激活函数(如ReLU、Sigmoid、Tanh)通常被嵌入到层之间,使模型具有非线性特征。这样可以使神经网络模型具有更强的表示能力,能够学习到更复杂的数据模式和特征。

深度学习中卷积操作、全连接操作是线性的、sigmoid、Relu等是非线性的。

相关推荐
AI架构师易筋2 分钟前
AIOps 告警归因中的提示工程:从能用到可上生产(4 阶梯)
开发语言·人工智能·llm·aiops·rag
数说星榆18123 分钟前
在线高清泳道图制作工具 无水印 PC
大数据·人工智能·架构·机器人·流程图
说私域33 分钟前
B站内容生态下的私域流量运营创新:基于AI智能名片链动2+1模式与S2B2C商城小程序的融合实践
人工智能·小程序·流量运营
特立独行的猫a34 分钟前
告别写作焦虑:用 n8n + AI 打造“输入即发布”的自驱动写作工作流
人工智能·工作流·n8n
老胡全房源系统34 分钟前
2026年1月适合房产经纪人用的房产中介管理系统
大数据·人工智能·房产经纪人培训
一瞬祈望35 分钟前
⭐ 深度学习入门体系(第 11 篇): 卷积神经网络的卷积核是如何学习到特征的?
深度学习·学习·cnn
GISer_Jing37 分钟前
智能体工具使用、规划模式
人工智能·设计模式·prompt·aigc
小小工匠39 分钟前
LLM - Claude Code Skills 实战指南:用模块化“技能包”重构AI 开发工作流
人工智能·claude code·skills
双翌视觉42 分钟前
深入解析远心镜头的工作原理与选型
人工智能·数码相机·机器学习
二哈喇子!1 小时前
PyTorch与昇腾平台算子适配:从注册到部署的完整指南
人工智能·pytorch·python