单位正交矢量的参数化,用于特征矢量对厄尔米特矩阵对角化使用

首先α β 在0-pi/2内,这样就可以取值0-1,满足了单位化的要求

每个向量的模由α和β定义,αβ定义模的时候只限制在0--pi/2,由画图可知不可正交

为了验证矩阵 U 3 \boldsymbol{U}_3 U3 的第一列和第二列是否正交,我们需要计算这两个列向量的内积,并检查它是否等于零。

矩阵 U 3 \boldsymbol{U}_3 U3 的第一列和第二列分别是:

第一列:

cos ⁡ α 1 e j ϕ 1 sin ⁡ α 1 cos ⁡ β 1 e j ( δ 1 + ϕ 1 ) sin ⁡ α 1 sin ⁡ β 1 e j ( γ 1 + ϕ 1 ) \] \\begin{bmatrix} \\cos \\alpha_1 \\mathrm{e}\^{\\mathrm{j} \\phi_1} \\\\ \\sin \\alpha_1 \\cos \\beta_1 \\mathrm{e}\^{\\mathrm{j}(\\delta_1+\\phi_1)} \\\\ \\sin \\alpha_1 \\sin \\beta_1 \\mathrm{e}\^{\\mathrm{j}(\\gamma_1+\\phi_1)} \\end{bmatrix} cosα1ejϕ1sinα1cosβ1ej(δ1+ϕ1)sinα1sinβ1ej(γ1+ϕ1) 第二列: \[ cos ⁡ α 2 e j ϕ 2 sin ⁡ α 2 cos ⁡ β 2 e j ( δ 2 + ϕ 2 ) sin ⁡ α 2 sin ⁡ β 2 e j ( γ 2 + ϕ 2 ) \] \\begin{bmatrix} \\cos \\alpha_2 \\mathrm{e}\^{\\mathrm{j} \\phi_2} \\\\ \\sin \\alpha_2 \\cos \\beta_2 \\mathrm{e}\^{\\mathrm{j}(\\delta_2+\\phi_2)} \\\\ \\sin \\alpha_2 \\sin \\beta_2 \\mathrm{e}\^{\\mathrm{j}(\\gamma_2+\\phi_2)} \\end{bmatrix} cosα2ejϕ2sinα2cosβ2ej(δ2+ϕ2)sinα2sinβ2ej(γ2+ϕ2) 内积定义为两个向量对应元素乘积的和,对于复数向量,内积还需要考虑共轭。因此,第一列和第二列的内积为: ( cos ⁡ α 1 e j ϕ 1 ) ∗ ( cos ⁡ α 2 e j ϕ 2 ) + ( sin ⁡ α 1 cos ⁡ β 1 e j ( δ 1 + ϕ 1 ) ) ∗ ( sin ⁡ α 2 cos ⁡ β 2 e j ( δ 2 + ϕ 2 ) ) + ( sin ⁡ α 1 sin ⁡ β 1 e j ( γ 1 + ϕ 1 ) ) ∗ ( sin ⁡ α 2 sin ⁡ β 2 e j ( γ 2 + ϕ 2 ) ) \\begin{aligned} \&\\left( \\cos \\alpha_1 \\mathrm{e}\^{\\mathrm{j} \\phi_1} \\right)\^\\ast \\left( \\cos \\alpha_2 \\mathrm{e}\^{\\mathrm{j} \\phi_2} \\right) + \\\\ \&\\left( \\sin \\alpha_1 \\cos \\beta_1 \\mathrm{e}\^{\\mathrm{j}(\\delta_1+\\phi_1)} \\right)\^\\ast \\left( \\sin \\alpha_2 \\cos \\beta_2 \\mathrm{e}\^{\\mathrm{j}(\\delta_2+\\phi_2)} \\right) + \\\\ \&\\left( \\sin \\alpha_1 \\sin \\beta_1 \\mathrm{e}\^{\\mathrm{j}(\\gamma_1+\\phi_1)} \\right)\^\\ast \\left( \\sin \\alpha_2 \\sin \\beta_2 \\mathrm{e}\^{\\mathrm{j}(\\gamma_2+\\phi_2)} \\right) \\end{aligned} (cosα1ejϕ1)∗(cosα2ejϕ2)+(sinα1cosβ1ej(δ1+ϕ1))∗(sinα2cosβ2ej(δ2+ϕ2))+(sinα1sinβ1ej(γ1+ϕ1))∗(sinα2sinβ2ej(γ2+ϕ2)) 将共轭应用于每个复数项,我们得到: cos ⁡ α 1 cos ⁡ α 2 e − j ϕ 1 e j ϕ 2 + sin ⁡ α 1 cos ⁡ β 1 sin ⁡ α 2 cos ⁡ β 2 e − j ( δ 1 + ϕ 1 ) e j ( δ 2 + ϕ 2 ) + sin ⁡ α 1 sin ⁡ β 1 sin ⁡ α 2 sin ⁡ β 2 e − j ( γ 1 + ϕ 1 ) e j ( γ 2 + ϕ 2 ) \\begin{aligned} \&\\cos \\alpha_1 \\cos \\alpha_2 \\mathrm{e}\^{-\\mathrm{j} \\phi_1} \\mathrm{e}\^{\\mathrm{j} \\phi_2} + \\\\ \&\\sin \\alpha_1 \\cos \\beta_1 \\sin \\alpha_2 \\cos \\beta_2 \\mathrm{e}\^{-\\mathrm{j}(\\delta_1+\\phi_1)} \\mathrm{e}\^{\\mathrm{j}(\\delta_2+\\phi_2)} + \\\\ \&\\sin \\alpha_1 \\sin \\beta_1 \\sin \\alpha_2 \\sin \\beta_2 \\mathrm{e}\^{-\\mathrm{j}(\\gamma_1+\\phi_1)} \\mathrm{e}\^{\\mathrm{j}(\\gamma_2+\\phi_2)} \\end{aligned} cosα1cosα2e−jϕ1ejϕ2+sinα1cosβ1sinα2cosβ2e−j(δ1+ϕ1)ej(δ2+ϕ2)+sinα1sinβ1sinα2sinβ2e−j(γ1+ϕ1)ej(γ2+ϕ2) 由于 e − j ϕ 1 e j ϕ 2 = e j ( ϕ 2 − ϕ 1 ) \\mathrm{e}\^{-\\mathrm{j} \\phi_1} \\mathrm{e}\^{\\mathrm{j} \\phi_2} = \\mathrm{e}\^{\\mathrm{j}(\\phi_2 - \\phi_1)} e−jϕ1ejϕ2=ej(ϕ2−ϕ1),我们可以将上式简化为: cos ⁡ α 1 cos ⁡ α 2 e j ( ϕ 2 − ϕ 1 ) + sin ⁡ α 1 sin ⁡ α 2 cos ⁡ β 1 cos ⁡ β 2 e j ( δ 2 − δ 1 + ϕ 2 − ϕ 1 ) + sin ⁡ α 1 sin ⁡ α 2 sin ⁡ β 1 sin ⁡ β 2 e j ( γ 2 − γ 1 + ϕ 2 − ϕ 1 ) \\cos \\alpha_1 \\cos \\alpha_2 \\mathrm{e}\^{\\mathrm{j}(\\phi_2 - \\phi_1)} + \\sin \\alpha_1 \\sin \\alpha_2 \\cos \\beta_1 \\cos \\beta_2 \\mathrm{e}\^{\\mathrm{j}(\\delta_2 - \\delta_1 + \\phi_2 - \\phi_1)} + \\sin \\alpha_1 \\sin \\alpha_2 \\sin \\beta_1 \\sin \\beta_2 \\mathrm{e}\^{\\mathrm{j}(\\gamma_2 - \\gamma_1 + \\phi_2 - \\phi_1)} cosα1cosα2ej(ϕ2−ϕ1)+sinα1sinα2cosβ1cosβ2ej(δ2−δ1+ϕ2−ϕ1)+sinα1sinα2sinβ1sinβ2ej(γ2−γ1+ϕ2−ϕ1) 这样可见,想使这个两个向量正交,内积等于0,就是内积的模 = 0 。绝对相位Φ2-Φ1不影响正交,其他的相位有影响,参数之间不独立 ​ 举例: T3矩阵在S矩阵是对角阵时的参数化 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/51b42e9b0682472eadb65c30c1f1de2b.jpeg) 同理,满足反射对称性时,T矩阵如下,再是秩等于1,则T3矩阵参数化和上面一样 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/d674a17b29324463b6fb164f0a9a45bf.png)

相关推荐
代码的余温14 小时前
Oracle RAC认证矩阵:规避风险的关键指南
数据库·oracle·矩阵
阿巴Jun1 天前
【数学】线性代数知识点总结
笔记·线性代数·矩阵
沧海一粟青草喂马1 天前
抖音批量上传视频怎么弄?抖音矩阵账号管理的专业指南
大数据·人工智能·矩阵
小麦矩阵系统永久免费1 天前
小麦矩阵系统:让短视频分发实现抖音快手小红书全覆盖
大数据·人工智能·矩阵
scx_link1 天前
数学知识--行向量与矩阵相乘,和矩阵与行向量相乘的区别
线性代数·矩阵
EQUINOX11 天前
矩阵的对称,反对称分解
线性代数·矩阵
郝学胜-神的一滴1 天前
基于OpenGL封装摄像机类:视图矩阵与透视矩阵的实现
c++·qt·线性代数·矩阵·游戏引擎·图形渲染
星马梦缘1 天前
Matlab机器人工具箱使用1 简单的描述类函数
matlab·矩阵·机器人·位姿·欧拉角·rpy角
十子木2 天前
线性方程求解器的矩阵分裂
线性代数·矩阵
YuTaoShao2 天前
【LeetCode 每日一题】1277. 统计全为 1 的正方形子矩阵
算法·leetcode·矩阵