【数据结构和算法】-时间复杂度

时间复杂度概述

时间复杂度是衡量算法执行效率的一个重要指标,它描述了算法运行时间与输入数据规模之间的关系。时间复杂度通常用大O表示法(Big O notation)来表示。

常见的时间复杂度

  1. O(1) - 常数时间复杂度

    • 描述:无论输入数据规模如何,算法的执行时间都是常数。

    • 示例 :访问数组中的某个元素。

      java 复制代码
      int[] array = {1, 2, 3, 4, 5};
      int element = array[3]; // O(1)
  2. O(log n) - 对数时间复杂度

    • 描述:算法的执行时间与输入数据规模的对数成正比。

    • 示例 :二分查找。

      java 复制代码
      int binarySearch(int[] array, int target) {
          int left = 0, right = array.length - 1;
          while (left <= right) {
              int mid = left + (right - left) / 2;
              if (array[mid] == target) return mid;
              else if (array[mid] < target) left = mid + 1;
              else right = mid - 1;
          }
          return -1; // O(log n)
      }
  3. O(n) - 线性时间复杂度

    • 描述:算法的执行时间与输入数据规模成线性关系。

    • 示例 :遍历数组。

      java 复制代码
      int sum = 0;
      for (int i = 0; i < array.length; i++) {
          sum += array[i]; // O(n)
      }
  4. O(n log n) - 线性对数时间复杂度

    • 描述:算法的执行时间与输入数据规模的对数成线性关系。

    • 示例 :归并排序。

      java 复制代码
      void mergeSort(int[] array, int left, int right) {
          if (left < right) {
              int mid = left + (right - left) / 2;
              mergeSort(array, left, mid);
              mergeSort(array, mid + 1, right);
              merge(array, left, mid, right); // O(n log n)
          }
      }
  5. O(n^2) - 平方时间复杂度

    • 描述:算法的执行时间与输入数据规模的平方成正比。

    • 示例 :冒泡排序。

      java 复制代码
      void bubbleSort(int[] array) {
          for (int i = 0; i < array.length - 1; i++) {
              for (int j = 0; j < array.length - 1 - i; j++) {
                  if (array[j] > array[j + 1]) {
                      int temp = array[j];
                      array[j] = array[j + 1];
                      array[j + 1] = temp; // O(n^2)
                  }
              }
          }
      }
  6. O(2^n) - 指数时间复杂度

    • 描述:算法的执行时间与输入数据规模的指数成正比。

    • 示例 :递归计算斐波那契数列。

      java 复制代码
      int fibonacci(int n) {
          if (n <= 1) return n;
          return fibonacci(n - 1) + fibonacci(n - 2); // O(2^n)
      }
  7. O(n!) - 阶乘时间复杂度

    • 描述:算法的执行时间与输入数据规模的阶乘成正比。

    • 示例 :生成所有排列组合。

      java 复制代码
      void permute(int[] nums, int start, List<List<Integer>> result) {
          if (start == nums.length) {
              result.add(new ArrayList<>(Arrays.asList(nums)));
          } else {
              for (int i = start; i < nums.length; i++) {
                  swap(nums, start, i);
                  permute(nums, start + 1, result);
                  swap(nums, start, i); // O(n!)
              }
          }
      }
      
      void swap(int[] nums, int i, int j) {
          int temp = nums[i];
          nums[i] = nums[j];
          nums[j] = temp;
      }

总结

  • 选择合适的算法:根据实际需求和数据规模选择合适的时间复杂度,以优化程序性能。
  • 分析和优化:在编写算法时,应尽量避免高时间复杂度的操作,特别是在处理大规模数据时。

理解时间复杂度有助于评估和优化算法的性能,从而提高程序的效率。

相关推荐
hetao173383720 分钟前
2025-12-11 hetao1733837的刷题笔记
c++·笔记·算法
Xの哲學26 分钟前
Linux电源管理深度剖析
linux·服务器·算法·架构·边缘计算
小飞Coding29 分钟前
一文讲透 TF-IDF:如何用一个向量“代表”一篇文章?
算法
算家计算1 小时前
突然发布!GPT-5.2深夜来袭,3个版本碾压人类专家,打工人该怎么选?
算法·openai·ai编程
s09071362 小时前
Xilinx FPGA 中ADC 数据下变频+ CIC 滤波
算法·fpga开发·fpga·zynq
TL滕3 小时前
从0开始学算法——第十二天(KMP算法练习)
笔记·学习·算法
Math_teacher_fan3 小时前
第二篇:核心几何工具类详解
人工智能·算法
汉克老师3 小时前
CCF-NOI2025第二试题目与解析(第二题、集合(set))
c++·算法·noi·子集卷积·sos dp·mod 异常
mit6.8243 小时前
presum|
算法
不穿格子的程序员3 小时前
从零开始写算法——链表篇2:从“回文”到“环形”——链表双指针技巧的深度解析
数据结构·算法·链表·回文链表·环形链表