Pytorch如何将嵌套的dict类型数据加载到GPU

在PyTorch中,您可以使用.to(device)方法将嵌套的字典中的所有支持的Tensor对象转移到GPU。以下是一个简单的例子

python 复制代码
import torch
 
# 假设您已经有了一个名为device的GPU设备对象
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 
# 嵌套的字典,其中包含一些Tensors
nested_dict = {
    'a': torch.randn(2, 2),
    'b': {
        'b1': torch.randn(2, 2),
        'b2': torch.randn(2, 2)
    },
    'c': torch.randn(2, 2)
}
 
# 将嵌套字典中的所有Tensors移动到GPU
def to_gpu(data):
    if isinstance(data, dict):
        return {k: to_gpu(v) for k, v in data.items()}
    elif isinstance(data, list):
        return [to_gpu(i) for i in data]
    elif isinstance(data, tuple):
        return tuple([to_gpu(i) for i in data])
    elif torch.is_tensor(data) and data.device != device:
        return data.to(device)
    else:
        return data
 
nested_dict_gpu = to_gpu(nested_dict)
 
# 检查是否所有Tensors都已移动到GPU
for k, v in nested_dict_gpu.items():
    if torch.is_tensor(v):
        assert v.device == device

这个函数to_gpu会递归地检查字典中的每个元素,如果是Tensor类型并且不在GPU上,就会使用.to(device)方法转移它。您需要先设置device变量指向您的GPU设备。如果没有GPU可用,它会默认使用CPU。

相关推荐
AI糊涂是福21 分钟前
人工智能、机器学习与深度学习:概念解析与内在联系
人工智能·深度学习·机器学习
Douglassssssss1 小时前
【深度学习】残差网络(ResNet)
网络·人工智能·深度学习
卡尔曼的BD SLAMer1 小时前
计算机视觉与深度学习 | Python实现EMD-SSA-VMD-LSTM时间序列预测(完整源码和数据)
python·深度学习·算法·cnn·lstm
四口鲸鱼爱吃盐10 小时前
BMVC2023 | 多样化高层特征以提升对抗迁移性
人工智能·深度学习·cnn·vit·对抗攻击·迁移攻击
Douglassssssss11 小时前
【深度学习】使用块的网络(VGG)
网络·人工智能·深度学习
終不似少年遊*11 小时前
【从基础到模型网络】深度学习-语义分割-ROI
人工智能·深度学习·卷积神经网络·语义分割·fcn·roi
Cchaofan11 小时前
lesson01-PyTorch初见(理论+代码实战)
人工智能·pytorch·python
摆烂仙君12 小时前
南京邮电大学金工实习答案
人工智能·深度学习·aigc
视觉语言导航12 小时前
中科院自动化研究所通用空中任务无人机!基于大模型的通用任务执行与自主飞行
人工智能·深度学习·无人机·具身智能
视觉语言导航12 小时前
南航无人机大规模户外环境视觉导航框架!SM-CERL:基于语义地图与认知逃逸强化学习的无人机户外视觉导航
人工智能·深度学习·无人机·具身智能