Pytorch如何将嵌套的dict类型数据加载到GPU

在PyTorch中,您可以使用.to(device)方法将嵌套的字典中的所有支持的Tensor对象转移到GPU。以下是一个简单的例子

python 复制代码
import torch
 
# 假设您已经有了一个名为device的GPU设备对象
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 
# 嵌套的字典,其中包含一些Tensors
nested_dict = {
    'a': torch.randn(2, 2),
    'b': {
        'b1': torch.randn(2, 2),
        'b2': torch.randn(2, 2)
    },
    'c': torch.randn(2, 2)
}
 
# 将嵌套字典中的所有Tensors移动到GPU
def to_gpu(data):
    if isinstance(data, dict):
        return {k: to_gpu(v) for k, v in data.items()}
    elif isinstance(data, list):
        return [to_gpu(i) for i in data]
    elif isinstance(data, tuple):
        return tuple([to_gpu(i) for i in data])
    elif torch.is_tensor(data) and data.device != device:
        return data.to(device)
    else:
        return data
 
nested_dict_gpu = to_gpu(nested_dict)
 
# 检查是否所有Tensors都已移动到GPU
for k, v in nested_dict_gpu.items():
    if torch.is_tensor(v):
        assert v.device == device

这个函数to_gpu会递归地检查字典中的每个元素,如果是Tensor类型并且不在GPU上,就会使用.to(device)方法转移它。您需要先设置device变量指向您的GPU设备。如果没有GPU可用,它会默认使用CPU。

相关推荐
伍哥的传说2 小时前
React 各颜色转换方法、颜色值换算工具HEX、RGB/RGBA、HSL/HSLA、HSV、CMYK
深度学习·神经网络·react.js
要努力啊啊啊4 小时前
YOLOv3-SPP Auto-Anchor 聚类调试指南!
人工智能·深度学习·yolo·目标检测·目标跟踪·数据挖掘
**梯度已爆炸**5 小时前
NLP文本预处理
人工智能·深度学习·nlp
汀沿河6 小时前
2 大模型高效参数微调;prompt tunning
人工智能·深度学习·prompt
Blossom.1188 小时前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn
烟锁池塘柳09 小时前
【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
人工智能·深度学习·机器学习
Ronin-Lotus10 小时前
深度学习篇---Yolov系列
人工智能·深度学习
爱学习的茄子10 小时前
AI驱动的单词学习应用:从图片识别到语音合成的完整实现
前端·深度学习·react.js
晓131312 小时前
第七章 OpenCV篇——角点检测与特征检测
人工智能·深度学习·计算机视觉
William.csj14 小时前
Pytorch/CUDA——flash-attn 库编译的 gcc 版本问题
pytorch·cuda