目录
Skipgram架构
初始论文中理论实现中,训练了两个参数矩阵,Word2vec中可以拆解为为词向量的降维矩阵和升维矩阵,初始使用独热编码对token进行序列标注,有图可以看出,由3*5的参数矩阵左乘5*1的词向量可以得到3*1的降维后的词向量,然后再由5*3的参数矩阵对降维后的词向量进行升维,与要预测的token进行损失计算
在实际实现中会采用隐式独热编码,也就是并不会手动通过独热编码进行词向量索引,比如语料库总共有5个token,对其进行独热编码后,由3维的独热编码来表示5个token,以下演示通过独热编码索引出词向量矩阵中对应token的词向量
python
import numpy as np
np.random.seed(0)
y = np.array([1,0,0,0,0])
x = np.random.randn(5,3)
print(y)
print(x)
print(np.dot(y,x))
# [1 0 0 0 0]
# [[ 1.76405235 0.40015721 0.97873798]
# [ 2.2408932 1.86755799 -0.97727788]
# [ 0.95008842 -0.15135721 -0.10321885]
# [ 0.4105985 0.14404357 1.45427351]
# [ 0.76103773 0.12167502 0.44386323]]
# [1.76405235 0.40015721 0.97873798]
初始独热编码为1 0 0 0 0,通过左乘词向量矩阵可以索引到词向量矩阵的第一行,也就是一个token的词向量,
Word2vec一般分为Cbow以及Skip-gram,Skip-gram主要通过中间的token预测两侧的token,Skip-gram则是通过两侧的token预测中间的token.在理论实现中,例如Skip-gram就是通过取出中间 token的降维后的词向量再对其通过升维矩阵进行向量升维,与两侧token的原始独热编码进行损失计算
本文将进行Skip-gram的pytorch复现
在实际编码实现与理论实现具有一些区别,首先,实际编码实现中并不会显示创建独热编码进行词向量索引,而是直接通过embedding层来实现词向量矩阵的初始化和训练.
在理论实现上的损失计算是通过升维矩阵来进行与中间token的独热编码的损失计算
在实际实现上则有所不同
1.Skip-gram是通过中间预测两侧的结果,在实际是通过降维后的中间token的词向量,然后使用另一个降维矩阵对两侧token进行降维运算,最后通过降维后的中间token词向量和降维后的两侧token的词向量进行点乘计算用于计算相似度
2.对于token间的相似度,在实际实现中采用滑块的方式,我们会按序在语料中选择中间token(center_token),然后通过设置滑动窗口来进行两侧词的获取,
3.实际实现中还进行了负采样,也就是在中心token与相邻token进行点乘计算时,通常中心词与相邻token具有较高相似度,也就是点乘结果会越大,而与较远的token的相似度较低,点乘的结果也就会越小,在第2点中,提到的滑块就是用于选取相邻token的实现方式
3.在实际实现中可以选择性实现二次采样,用于随机删除高频词,因为高频词可能会对低频词的词向量学习产生影响
代码开源声明
本文包含的所有代码,数据集及训练完成的模型权重都可在下方的github链接中找到,如有需要使用训练好的模型权重及完整代码,可通过下方链接下载:
Pytorch复现Skip-gram
导包及随机种子设置
python
import io
import os
import sys
import requests
import math
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import pandas as pd
np.random.seed(42)
torch.manual_seed(42)
device = torch.device("mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu")
维基百科数据读取
python
def load_data():
with open('fil9','r') as f:
data = f.read()
print(data[:100])
corpus = data.split()
print(corpus[:100])
return corpus
if __name__ == '__main__':
corpus = load_data()
# anarchism originated as a term of abuse first used against early working class radicals including t
# ['anarchism', 'originated', 'as', 'a', 'term', 'of', 'abuse', 'first', 'used', 'against', 'early', 'working', 'class', 'radicals', 'including', 'the', 'diggers', 'of', 'the', 'english', 'revolution', 'and', 'the', 'sans', 'culottes', 'of', 'the', 'french', 'revolution', 'whilst', 'the', 'term', 'is', 'still', 'used', 'in', 'a', 'pejorative', 'way', 'to', 'describe', 'any', 'act', 'that', 'used', 'violent', 'means', 'to', 'destroy', 'the', 'organization', 'of', 'society', 'it', 'has', 'also', 'been', 'taken', 'up', 'as', 'a', 'positive', 'label', 'by', 'self', 'defined', 'anarchists', 'the', 'word', 'anarchism', 'is', 'derived', 'from', 'the', 'greek', 'without', 'archons', 'ruler', 'chief', 'king', 'anarchism', 'as', 'a', 'political', 'philosophy', 'is', 'the', 'belief', 'that', 'rulers', 'are', 'unnecessary', 'and', 'should', 'be', 'abolished', 'although', 'there', 'are', 'differing']
建立词频元组列表并根据词频排序
python
def build_word_freq_tuple(corpus):
word_freq_dict = {}
for word in corpus:
if word in word_freq_dict:
word_freq_dict[word] += 1
elif word not in word_freq_dict:
word_freq_dict[word] = 1
word_freq_tuple = sorted(word_freq_dict.items(), key=lambda x: x[1], reverse=True)
print(word_freq_tuple[:10])
return word_freq_tuple
if __name__ == '__main__':
corpus = load_data()
word_freq_tuple = build_word_freq_tuple(corpus)
# [('the', 7446708), ('of', 4453926), ('one', 3776770), ('zero', 3085174), ('and', 2916968), ('in', 2480552), ('two', 2339802), ('a', 2241744), ('nine', 2063649), ('to', 2028129)]
建立词频字典,word_id字典,id_word字典
python
def convert_corpus_id(corpus, word_id_dict):
id_corpus = []
for word in corpus:
id_corpus.append(word_id_dict[word])
print('corpus_size: ', len(id_corpus))
print(id_corpus[:20])
return id_corpus
if __name__ == '__main__':
corpus = load_data()
word_freq_dict, word_id_dict, id_word_dict = build_word_id_dict(corpus)
id_corpus = convert_corpus_id(corpus, word_id_dict)
# vocabulary size: 833184
# corpus_size: 124301826
# [9558, 3423, 19, 7, 277, 1, 3451, 56, 82, 208, 174, 781, 500, 9838, 187, 0, 28373, 1, 0, 179]
这里可以看到语料总长度达到了1亿多词数,但是这个数量级的语料仍然较少,之后介绍的二次采样可以酌情选择是否选择,在语料较为不足的时候,二次采样可能产生相反效果
二次采样
二次采样用于通过删除一定数量的高频词来更好地训练低频词的词向量,公式如下
这里的指的是词频除总词数,t是一个阈值,通常为1e-5,t设置的越大,被删除的概率越小
为被删除的概率
python
def subsampling(corpus, word_freq_dict):
corpus = [word for word in corpus if not np.random.rand() < (1 - (np.sqrt(1e-5 * len(corpus) / word_freq_dict[word])))]
print('corpus_size after subsampling: ', len(corpus))
return corpus
if __name__ == '__main__':
corpus = load_data()
word_freq_dict, word_id_dict, id_word_dict = build_word_id_dict(corpus)
corpus = subsampling(corpus, word_freq_dict)
# corpus_size: 124301826
# vocabulary size: 833184
# corpus_size after subsampling: 83240619
正采样与负采样
python
def build_negative_sampling_dataset(corpus, word_id_dict, id_word_dict, negative_sample_size = 10, max_window_size = 3):
dataset = []
for center_word_idx, center_word in enumerate(corpus):
window_size = np.random.randint(1, max_window_size+1)
positive_range = (max(0, center_word_idx - window_size), min(len(corpus) - 1, center_word_idx + window_size))
positive_samples = [corpus[word_idx] for word_idx in range(positive_range[0], positive_range[1]+1) if word_idx != center_word_idx]
for positive_sample in positive_samples:
dataset.append((center_word, positive_sample, 1))
sample_idx_list = np.arange(len(word_id_dict))
j = corpus[positive_range[0]: positive_range[1]+1]
sample_idx_list = np.delete(sample_idx_list, j)
negative_samples = np.random.choice(sample_idx_list, size=negative_sample_size, replace=False)
for negative_sample in negative_samples:
dataset.append((center_word, negative_sample, 0))
print('20 samples of the dataset')
for i in range(20):
print('center_word:', id_word_dict[dataset[i][0]], 'target_word:', id_word_dict[dataset[i][1]], 'label',
dataset[i][2])
return dataset
if __name__ == '__main__':
corpus = load_data()
word_freq_dict, word_id_dict, id_word_dict = build_word_id_dict(corpus)
corpus = subsampling(corpus, word_freq_dict)
corpus = convert_corpus_id(corpus, word_id_dict)
dataset = build_negative_sampling_dataset(corpus, word_id_dict, id_word_dict, negative_sample_size = 10)
# 20 samples of the dataset
# center_word: originated target_word: working label 1
# center_word: originated target_word: class label 1
# center_word: originated target_word: gulfs label 0
# center_word: originated target_word: propenents label 0
# center_word: originated target_word: pelletier label 0
# center_word: originated target_word: exclaiming label 0
# center_word: originated target_word: bod label 0
# center_word: originated target_word: liturgical label 0
# center_word: originated target_word: quattro label 0
# center_word: originated target_word: anatolius label 0
# center_word: originated target_word: interstratified label 0
# center_word: originated target_word: das label 0
# center_word: working target_word: originated label 1
# center_word: working target_word: class label 1
# center_word: working target_word: radicals label 1
# center_word: working target_word: clip label 0
# center_word: working target_word: moulting label 0
# center_word: working target_word: gnomon label 0
# center_word: working target_word: neural label 0
# center_word: working target_word: marsupial label 0
这里正采样选择中心词周围至多6个词作为与中心词语义强相关的词,而在其它词中随机挑选10个词用于负采样,强相关label为1,负相关label为0
Skipgram模型类
python
class SkipGram(nn.Module):
def __init__(self, vocab_size, embedding_size):
super(SkipGram, self).__init__()
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.embedding = nn.Embedding(self.vocab_size, self.embedding_size)
self.out_embedding = nn.Embedding(self.vocab_size, self.embedding_size)
init_range = (1 / embedding_size) ** 0.5
nn.init.uniform_(self.embedding.weight, -init_range, init_range)
nn.init.uniform_(self.out_embedding.weight, -init_range, init_range)
def forward(self, center_idx, target_idx, label):
center_embedding = self.embedding(center_idx)
target_embedding = self.embedding(target_idx)
sim = torch.mul(center_embedding, target_embedding)
sim = torch.sum(sim, dim=1, keepdim=False)
loss = F.binary_cross_entropy_with_logits(sim, label,reduction='sum')
return loss
这里使用第一个embedding矩阵作为最后的词向量矩阵,并且训练相关性使用词向量点乘值作为指标
模型训练
python
def train(vocab_size, dataset):
my_skipgram = SkipGram(vocab_size = vocab_size, embedding_size=300)
my_skipgram.to(device)
my_dataset = create_dataset(dataset)
my_dataloader = DataLoader(my_dataset, batch_size=64, shuffle=True)
optimizer = optim.Adam(my_skipgram.parameters(), lr=0.001)
epochs = 10
loss_list = []
start_time = time.time()
for epoch in range(epochs):
total_loss = 0
total_sample = 0
for center_idx, target_idx, label in my_dataloader:
loss = my_skipgram(center_idx, target_idx, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
total_sample += len(center_idx)
print(f'epoch: {epoch+1}, loss = {total_loss/total_sample}, time = {time.time() - start_time : .2f}')
loss_list.append(total_loss/total_sample)
plt.plot(np.arange(1, epochs + 1),loss_list)
plt.title('Loss_curve')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.xticks(np.arange(1, epochs + 1))
plt.savefig('loss_curve.png')
plt.show()
torch.save(my_skipgram.state_dict(), 'skip_gram.pt')
if __name__ == '__main__':
corpus = load_data()
word_freq_dict, word_id_dict, id_word_dict = build_word_id_dict(corpus)
corpus = subsampling(corpus, word_freq_dict)
corpus = convert_corpus_id(corpus, word_id_dict)
dataset = build_negative_sampling_dataset(corpus, word_id_dict, id_word_dict, negative_sample_size = 10)
train(len(word_id_dict), dataset)
这里训练只训练了10个epoch,并且为了节约训练资源,由于原语料长度超过一亿,所以这里只选取长度为200万的语料进行训练
词向量输出
python
def predict(word, vocab_size, word_id_dict):
if word not in word_id_dict:
print(f"Word '{word}' not found in the vocabulary.")
return None
my_skipgram = SkipGram(vocab_size = vocab_size, embedding_size=300)
my_skipgram.load_state_dict(torch.load('skip_gram.pt'))
my_skipgram.to(device)
my_skipgram.eval()
word_id = torch.tensor(word_id_dict[word], device=device, dtype=torch.int64)
print(
f"Predicting the embedding vector for word '{word}':\n{my_skipgram.embedding(word_id)}"
)
if __name__ == '__main__':
corpus = load_data()
word_freq_dict, word_id_dict, id_word_dict = build_word_id_dict(corpus)
corpus = subsampling(corpus, word_freq_dict)
corpus = convert_corpus_id(corpus, word_id_dict)
dataset = build_negative_sampling_dataset(corpus, word_id_dict, id_word_dict, negative_sample_size = 10)
train(len(word_id_dict), dataset)
predict('sport', len(word_id_dict), word_id_dict)
近义词寻找
python
def similarity(word, vocab_size, word_id_dict, id_word_dict, neighbors = 5):
if word not in word_id_dict:
print(f"Word '{word}' not found in the vocabulary.")
return None
my_skipgram = SkipGram(vocab_size=vocab_size, embedding_size=300)
my_skipgram.load_state_dict(torch.load('skip_gram.pt', weights_only=True))
my_skipgram.to(device)
my_skipgram.eval()
word_id = torch.tensor(word_id_dict[word], device=device, dtype=torch.int64)
word_embedding = my_skipgram.embedding(word_id)
similarity_score = {}
for idx in word_id_dict.values():
other_word_embedding = my_skipgram.embedding(torch.tensor(idx, device=device, dtype=torch.int64))
sim = torch.matmul(word_embedding, other_word_embedding)/(torch.norm(word_embedding, dim=0, keepdim=False) * torch.norm(other_word_embedding, dim=0, keepdim=False))
similarity_score[id_word_dict[idx]] = sim.item()
nearest_neighbors = sorted(similarity_score.items(), key=lambda x: x[1], reverse=True)[:5]
print(nearest_neighbors)
return nearest_neighbors
if __name__ == '__main__':
corpus = load_data()
word_freq_dict, word_id_dict, id_word_dict = build_word_id_dict(corpus)
corpus = subsampling(corpus, word_freq_dict)
corpus = convert_corpus_id(corpus, word_id_dict)
dataset = build_negative_sampling_dataset(corpus, word_id_dict, id_word_dict, negative_sample_size = 10)
train(len(word_id_dict), dataset)
predict('sport', len(word_id_dict), word_id_dict)
similarity('sport', len(word_id_dict), word_id_dict, id_word_dict, neighbors = 5)
这里查找近义词,会从词典中找到点乘值最大的5个词,个数可以通过修改neighbors更改
fasttext训练Skip-gram
fasttext训练的过程较为简单,该模型,包括还有CBOW都被集成在了模块中
python
import fasttext
def train():
skipgram = fasttext.train_unsupervised('fil9', model = 'skipgram')
skipgram.save_model('skipgram.bin')
def skg_test1():
skipgram = fasttext.load_model('skipgram.bin')
print(skipgram.get_word_vector('sport'))
print(skipgram.get_nearest_neighbors('sport'))
if __name__ == '__main__':
train()
skg_test1()
# Read 124M words
# Number of words: 218316
# Number of labels: 0
# Progress: 100.0% words/sec/thread: 38918 lr: 0.000000 avg.loss: 1.071778 ETA: 0h 0m 0s
# Warning : `load_model` does not return WordVectorModel or SupervisedModel any more, but a `FastText` object which is very similar.
# [-1.1217905e-01 -2.1082790e-01 -5.0111616e-05 -7.6881155e-02
# -2.0150667e-01 -1.8065287e-01 1.3297442e-01 1.3444095e-02
# -1.5131533e-01 -2.5561339e-01 1.5086566e-01 -8.5557923e-02
# -2.1246003e-01 -8.0699474e-02 -1.5511900e-01 -2.4630783e-01
# 4.1686368e-01 8.0300289e-01 2.5104052e-01 -7.7809072e-01
# 2.2462079e-01 8.2177565e-02 1.7808667e-01 -3.3937061e-01
# 1.2025767e-01 9.7873092e-02 -3.8934144e-01 1.2671056e-01
# -2.7373591e-01 4.1039872e-01 -2.9629371e-01 4.4961619e-01
# 5.0581735e-02 -1.9909970e-01 1.0461334e-01 -4.9297757e-02
# -9.5666438e-02 1.6832566e-01 7.4807540e-02 6.5610033e-01
# -2.6710102e-01 2.5174522e-01 2.0871958e-01 -2.3539853e-01
# -1.0441781e-01 -3.5934374e-01 -2.0167212e-01 -6.7970419e-01
# -4.6956554e-02 9.3441598e-02 3.8153380e-01 2.0482899e-01
# 6.1529225e-01 -9.8463172e-01 -5.7401802e-02 -1.5414989e-01
# 6.7769766e-02 2.2661546e-01 -3.1193841e-02 3.8101819e-01
# -3.1099179e-01 -2.9264178e-02 2.0313324e-01 -3.6542088e-01
# -1.2520532e-01 1.8720575e-01 -2.6330149e-01 1.9312735e-01
# -5.1107663e-01 -2.5122452e-01 2.2448047e-01 -4.7734442e-01
# 2.5731093e-01 -1.4026532e-01 4.3919176e-02 -2.0015708e-01
# -2.8174376e-01 3.3095101e-01 1.0486527e-01 2.8560793e-01
# -2.4086323e-01 -9.3831137e-02 -1.9629408e-01 2.4319877e-01
# -1.8636097e-01 -3.9179447e-01 7.6361425e-02 1.6013722e-01
# -9.0249017e-02 -5.6596959e-01 4.8584041e-01 3.4663376e-01
# 2.6066643e-01 -7.1866415e-03 1.7896013e-01 -1.2109153e+00
# -7.9120353e-02 7.6195911e-02 4.5524022e-01 -1.4492531e-01]
# [(0.849130392074585, 'sports'), (0.8167348504066467, 'sporting'), (0.8091928362846375, 'competitions'), (0.7699509859085083, 'racing'), (0.7655908465385437, 'sportsman'), (0.7654882073402405, 'bobsledding'), (0.7621665000915527, 'bobsleigh'), (0.7620510458946228, 'motorsport'), (0.7576955556869507, 'korfball'), (0.7561532258987427, 'competiting')]