ElasticSearch:使用dsl语句同时查询出最近2小时、最近1天、最近7天、最近30天的数量

场景

需要使用dsl语句同时查询出最近2小时、最近1天、最近7天、最近30天的数量,如果按照常规逻辑,需要写四个dsl语句,才能查询出来,那么能不能使用一句dsl就可以查询出结果呢?

show time

xml 复制代码
GET alarm_forward_history_*/_search
{
  "size": 0,
  "query": {
    "bool": {
      "must": [
        {
          "term": {
            "sourceName": {
              "value": "运维123"
            }
          }
        },
        {
          "term": {
            "sourceAlertKey": {
              "value": "生产问题描述223"
            }
          }
        },
        {
          "term": {
            "cmdb.app_name": {
              "value": "dba数据库"
            }
          }
        }
      ]
    }
  },
  "aggs": {
    "date": {
      "date_range": {
        "field": "@timestamp",
        "ranges": [
          {
            "from": "now-2h",
            "to": "now",
            "key": "lastTwoHour"
          },
          {
            "from": "now-1d",
            "to": "now",
            "key": "lastDay"
          },
          {
            "from": "now-7d",
            "to": "now",
            "key": "lastSevenDay"
          },
          {
            "from": "now-30d",
            "to": "now",
            "key": "lastMonth"
          }
        ]
      }
    }
  }
}

输出结果大致如下:

xml 复制代码
"aggregations" : {
    "date" : {
      "buckets" : [
        {
          "key" : "lastMonth",
          "from" : 1.728359639296E12,
          "from_as_string" : "2024-10-08T03:53:59.296Z",
          "to" : 1.730951639296E12,
          "to_as_string" : "2024-11-07T03:53:59.296Z",
          "doc_count" : 7
        },
        {
          "key" : "lastSevenDay",
          "from" : 1.730346839296E12,
          "from_as_string" : "2024-10-31T03:53:59.296Z",
          "to" : 1.730951639296E12,
          "to_as_string" : "2024-11-07T03:53:59.296Z",
          "doc_count" : 0
        },
        {
          "key" : "lastDay",
          "from" : 1.730865239296E12,
          "from_as_string" : "2024-11-06T03:53:59.296Z",
          "to" : 1.730951639296E12,
          "to_as_string" : "2024-11-07T03:53:59.296Z",
          "doc_count" : 0
        },
        {
          "key" : "lastTwoHour",
          "from" : 1.730944439296E12,
          "from_as_string" : "2024-11-07T01:53:59.296Z",
          "to" : 1.730951639296E12,
          "to_as_string" : "2024-11-07T03:53:59.296Z",
          "doc_count" : 0
        }
      ]
    }
  }
}

总结

  • 直接采用date_range函数,即可解决
相关推荐
北京鹏生科技有限公司14 分钟前
EcoVadis审核是什么?EcoVadis审核流程包括什么?
大数据·百度
Moshow郑锴1 小时前
数据库、数据仓库、数据湖、数据中台、湖仓一体的概念和区别
大数据·数据库·数据仓库·数据湖·湖仓一体
小黑屋说YYDS1 小时前
ElasticSearch7.x入门教程之索引概念和基础操作(三)
elasticsearch
Java 第一深情3 小时前
Linux上安装单机版ElasticSearch6.8.1
linux·elasticsearch·全文检索
二进制_博客3 小时前
Flink学习连载第二篇-使用flink编写WordCount(多种情况演示)
大数据
hong1616884 小时前
大数据技术Kafka详解:消息队列(Messages Queue)
大数据·分布式·kafka
隔着天花板看星星13 小时前
Kafka-创建topic源码
大数据·分布式·中间件·kafka
goTsHgo13 小时前
在Spark Streaming中简单实现实时用户画像系统
大数据·分布式·spark
老周聊架构14 小时前
聊聊Flink:Flink中的时间语义和Watermark详解
大数据·flink
别这么骄傲14 小时前
Flink Lookup Join(维表 Join)
大数据·flink·linq