学习日记_20241110_聚类方法(K-Means)

前言

提醒:

文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。

其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展及意见建议,欢迎评论区讨论交流。

文章目录


聚类算法

聚类算法在各种领域中有广泛的应用,主要用于发现数据中的自然分组和模式。以下是一些常见的应用场景以及每种算法的优缺点:

经典应用场景

  1. 市场细分:根据消费者的行为和特征,将他们分成不同的群体,以便进行有针对性的营销。

  2. 图像分割: 将图像划分为多个区域或对象,以便进行进一步的分析或处理。

  3. 社交网络分析:识别社交网络中的社区结构。

  4. 文档分类:自动将文档分组到不同的主题或类别中。

  5. 异常检测识别数据中的异常点或异常行为。

  6. 基因表达分析:在生物信息学中,根据基因表达模式对基因进行聚类。

K-Means 聚类

  1. K-Means 聚类
  • 优点
    • 算法简单,容易实现。
    • 计算速度快,适用于大规模数据集。
  • 缺点
    • 需要预先指定簇的数量 K K K。
    • 对于初始中心点选择敏感。
    • 只能找到球状簇,无法处理非凸形状的簇。
    • 对噪声和异常值敏感。

简单实例(函数库实现)

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
# 生成数据
X = np.random.rand(100, 2)
# K-Means 聚类
kmeans = KMeans(n_clusters=3)
kmeans.fit(X)
labels = kmeans.labels_
# 可视化
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], color='red')
plt.title('K-Means Clustering')
plt.show()

X数据分布:

代码运行结果:

数学表达

K-Means 聚类是一种常用的无监督学习算法,目的是将数据分为 K K K 个簇,以最小化簇内数据点与簇中心的方差之和。下面是对

K-Means 聚类算法的详细介绍,包括其数学公式和步骤。

K-Means 算法步骤
  1. 初始化

    从数据集中随机选择 K K K 个点作为初始簇中心(质心),记作 { μ 1 , μ 2 , ... , μ K } \{\mu_1, \mu_2, \ldots, \mu_K\} {μ1,μ2,...,μK}。

  2. 分配数据点

    对于每个数据点 x i \mathbf{x}_i xi,计算其与每个簇中心的距离,将其分配到距离最近的簇中。通常采用欧氏距离作为距离度量:

    assign x i to cluster j = arg ⁡ min ⁡ k ∥ x i − μ k ∥ 2 \text{assign } \mathbf{x}i \text{ to cluster } j = \arg\min{k} \|\mathbf{x}_i - \mu_k\|^2 assign xi to cluster j=argkmin∥xi−μk∥2

  3. 更新簇中心

    对于每个簇 j j j,计算簇中所有数据点的均值作为新的簇中心:

    μ j = 1 N j ∑ x i ∈ C j x i \mu_j = \frac{1}{N_j} \sum_{\mathbf{x}_i \in C_j} \mathbf{x}_i μj=Nj1xi∈Cj∑xi

    其中 C j C_j Cj 表示簇 j j j 中的所有数据点, N j N_j Nj 是簇 j j j 中的点的数量。

  4. 重复

    重复步骤 2 和步骤 3,直到簇中心不再发生变化或达到预设的迭代次数。

数学优化目标

K-Means 聚类的目标是最小化所有数据点到其所属簇中心的距离平方和。其优化目标函数为:

J = ∑ j = 1 K ∑ x i ∈ C j ∥ x i − μ j ∥ 2 J = \sum_{j=1}^{K} \sum_{\mathbf{x}_i \in C_j} \|\mathbf{x}_i - \mu_j\|^2 J=j=1∑Kxi∈Cj∑∥xi−μj∥2

这里, J J J 是代价函数,表示簇内平方误差和。

收敛性

K-Means 算法通过交替优化分配和更新步骤最终收敛,因为每一步都使得代价函数 J J J单调递减。然而,算法可能收敛到局部最小值,因此初始化方式对最终结果有较大影响。

优点
  • 实现简单,计算速度快。
  • 在簇形状是凸的、簇的大小相似的情况下效果较好。
缺点
  • 选择 K K K 值比较困难,通常需要通过经验或使用评估指标(如肘部法则、轮廓系数)来选择。
  • 对初始值敏感,可能导致收敛到局部最优。
  • 适用于凸形簇,对于不同大小和密度的簇效果不好。
  • 对噪声和孤立点敏感。

K-Means 聚类是一种简单有效的聚类方法,广泛应用于各种实际问题,但在使用中需注意其局限性和对参数选择的要求。

手动实现

python 复制代码
import numpy as np

def initialize_centroids(X, K):
    # 从数据集中随机选择K个样本作为初始质心
    indices = np.random.choice(X.shape[0], K, replace=False)
    centroids = X[indices]
    return centroids

def assign_clusters(X, centroids):
    # 计算每个样本到每个质心的距离,并将样本分配到最近的质心
    distances = np.sqrt(((X - centroids[:, np.newaxis])**2).sum(axis=2))
    return np.argmin(distances, axis=0)

def update_centroids(X, labels, K):
    # 根据分配结果更新质心为每个簇中所有样本的均值
    centroids = np.array([X[labels == k].mean(axis=0) for k in range(K)])
    return centroids

def kmeans(X, K, max_iters=100, tol=1e-4):
    # 初始化质心
    centroids = initialize_centroids(X, K)
    for i in range(max_iters):
        # 分配样本到最近的质心
        labels = assign_clusters(X, centroids)
        # 计算新的质心
        new_centroids = update_centroids(X, labels, K)
        # 检查质心是否收敛
        if np.all(np.abs(new_centroids - centroids) < tol):
            break
        centroids = new_centroids
    return labels, centroids
# 示例用法
if __name__ == "__main__":
    # 生成一些测试数据
    X = np.array([[1.0, 2.0], [1.5, 1.8], [5.0, 8.0], 
                  [8.0, 8.0], [1.0, 0.6], [9.0, 11.0],
                  [8.0, 2.0], [10.0, 2.0], [9.0, 3.0]])
    # 设定簇的数量
    K = 3
    # 运行K-Means算法
    labels, centroids = kmeans(X, K)

    print("Cluster labels:", labels)
    print("Centroids:", centroids)
代码分析

1. np.random.choice(X.shape[0], K, replace=False)
numpy.random.choice(a, size=None, replace=True, p=None)
np.random.choice 是 NumPy 库中的一个函数,用于从给定的一维数组中生成随机样本。它可以指定样本的数量、是否允许重复选择等参数。

  1. np.sqrt(((X - centroids[:, np.newaxis])**2).sum(axis=2))
  • centroids[:, np.newaxis] : 使用 np.newaxiscentroids 的形状从 (K, n_features) 变为 (K, 1, n_features),这样做是为了实现广播(broadcasting),以便在后续计算中能够对每个质心与每个样本进行逐元素运算。
  • X - centroids[:, np.newaxis] :这个操作会创建一个形状为 (K, n_samples, n_features) 的数组,表示每个质心与每个样本之间的差值。
  • .sum(axis=2) :这个操作会对最后一个维度(特征维度)进行求和,结果是一个形状为 (K, n_samples) 的数组,表示每个样本与每个质心之间的特征平方和。
  1. np.argmin(distances, axis=0)
  • np.argmin 是一个NumPy函数,用于找到数组中最小值的索引。
  • axis=0 表示沿着第一个轴(即行)查找最小值。这意味着对每个样本(每列)比较所有质心的距离,找到最小值对应的质心索引。
相关推荐
朝九晚五ฺ5 小时前
【Linux探索学习】第十四弹——进程优先级:深入理解操作系统中的进程优先级
linux·运维·学习
猫爪笔记7 小时前
前端:HTML (学习笔记)【1】
前端·笔记·学习·html
pq113_67 小时前
ftdi_sio应用学习笔记 3 - GPIO
笔记·学习·ftdi_sio
澄澈i7 小时前
设计模式学习[8]---原型模式
学习·设计模式·原型模式
爱米的前端小笔记8 小时前
前端八股自学笔记分享—页面布局(二)
前端·笔记·学习·面试·求职招聘
alikami9 小时前
【前端】前端学习
学习
一只小菜鸡..9 小时前
241118学习日志——[CSDIY] [ByteDance] 后端训练营 [06]
学习
Hacker_Oldv10 小时前
网络安全的学习路线
学习·安全·web安全
蒟蒻的贤10 小时前
vue学习11.21
javascript·vue.js·学习
高 朗10 小时前
【GO基础学习】基础语法(2)切片slice
开发语言·学习·golang·slice