【大数据学习 | flume】flume的概述与组件的介绍

1. flume概述

Flume是cloudera(CDH版本的hadoop ) 开发的一个分布式、可靠、高可用的海量日志收集系统 。它将各个服务器中的数据收集起来并送到指定的地方去,比如说送到HDFS、Hbase,简单来说flume就是收集日志的

Flume两个版本区别:

1)Flume-og

2)Flume-ng

2. flume的结构模型

​ Flume 运行的核心是 Agent ,Flume以agent为最小的独立运行单位,含有三个核心组件 ,分别是source、 channel、 sink,通过这些组件, Event 可以从一个地方流向另一个地方,如下图所示。

Source:

​ 从Client上收集数据对数据进行格式化 ,以Event(事件)的形式传递给单个或多个Channel。

Channel:

​ 短暂的存储容器,将从Source接收到的Event进行缓存直到被Sink消费掉 ,Channel是Source和Sink之间的桥梁,Channal是一个完整的事务 ,能保证了数据在收发时的一致性,并且一个Channel可以同时和任意数量的Source和Sink建立连接。

Sink:

​ 从Channel中消费数据(Event)并传递到存储容器(Hbase、HDFS)或其他的Source中。

工作流程:

​ 把数据从数据源(source)收集过来,在将收集到的数据送到指定的目的地(sink)。

​ 为了保证输送的过程一定成功,在送到目的地(sink)之前,会先缓存数据(channel),待数据真正到达目的地(sink)后,flume再删除自己缓存的数据。

什么是Event?

​ 1)event将传输的数据进行封装,是flume传输数据的基本单位,如果是文本文件,通常是一行记录。

​ 2)event也是事务的基本单位

​ 3)event从source,流向channel,再到sink,本身为一个字节数组,并可携带headers(头信息)信息。

Agent:

​ Flume以 Agent 为最小的独立运行单元,Agent 依赖于 JVM ,一个 Agent 的运行就伴随一个 JVM 实例的产生。

​ 一台机器可以运行多个Agent,一个Agent中可以包含多个Source、Channel。Sink。

3. flume各组件介绍

​ Flume提供了大量内置的Source、Channel和Sink类型,不同类型的Source,Channel和Sink可以自由组合.组合方式基于用户设置的配置文件。

3.1 source组件

Source是数据的收集端负责将数据捕获后进行特殊的格式化将数据封装到事件(event) 里,然后将事件推入Channel中,Flume提供了各种source的实现,包括Avro Source、Exce Source、Spooling Directory Source、NetCat Source、Syslog Source、Syslog TCP Source、Syslog UDP Source、HTTP Source、HDFS Source,etc。如果内置的Source无法满足需要, Flume还支持自定义Source。

3.2 channel组件

​ Channel是连接Source和Sink的组件,大家可以将它看做一个数据的缓冲区(数据队列),它可以将事件暂存到内存中也可以持久化到本地磁盘上, 直到Sink处理完该事件,Flume对于Channel,则提供了Memory Channel、JDBC Chanel、File Channel,etc。

​ MemoryChannel可以实现高速的吞吐,但是无法保证数据的完整性。

​ MemoryRecoverChannel在官方文档的建议上已经建义使用FileChannel来替换。

​ FileChannel保证数据的完整性与一致性。

3.3 sink组件

​ Flume Sink取出Channel中的数据,进行相应的存储文件系统,数据库,或者提交到远程服务器。Flume也提供了各种sink的实现,包括HDFS sink、Logger sink、Avro sink、File Roll sink、Null sink、HBase sink,etc。

​ Flume Sink在设置存储数据时,可以向文件系统中,数据库中,hadoop中储数据,在日志数据较少时,可以将数据存储在文件系中,并且设定一定的时间间隔保存数据,在日志数据较多时,可以将相应的日志数据存储到Hadoop中,便于日后进行相应的数据分析。

相关推荐
Linux运维老纪5 分钟前
分布式存储的技术选型之HDFS、Ceph、MinIO对比
大数据·分布式·ceph·hdfs·云原生·云计算·运维开发
DavidSoCool25 分钟前
es 3期 第25节-运用Rollup减少数据存储
大数据·elasticsearch·搜索引擎
Elastic 中国社区官方博客29 分钟前
使用 Elasticsearch 导航检索增强生成图表
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
墨楠。37 分钟前
数据结构学习记录-树和二叉树
数据结构·学习·算法
Ray.199844 分钟前
Flink在流处理中,为什么还会有窗口的概念呢
大数据·flink
抛砖者44 分钟前
3.Flink中重要API的使用
大数据·flink
金州饿霸1 小时前
Flink运行时架构
大数据·flink
金州饿霸1 小时前
Flink中的时间和窗口
大数据·flink
文城5211 小时前
Mysql存储过程(学习自用)
数据库·学习·mysql
我们的五年1 小时前
【C语言学习】:C语言补充:转义字符,<<,>>操作符,IDE
c语言·开发语言·后端·学习