动态规划-背包问题——[模版]完全背包问题

1.题目解析

题目来源

|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [模版]完全背包_牛客题霸_牛客 |

测试用例

2.算法原理

1.状态表示

与01背包相同,这里的完全背包也是需要一个二维dp表来表示最大价值,具体如下

求最大价值****dp[i][j]:在[1,i]区间选择物品,此时总体积不大于j时的最大价值

求装满时的价值****dp[i][j]:在[1,i]区间选择物品,此时总体积严格等于j时的价值

2.状态转移方程

3.初始化

4.填表顺序

从上至下,每一行从左到右

5.返回值

返回最后一个位置dp表的值

3.实战代码

cpp 复制代码
#include <iostream>
#include <string.h>
using namespace std;
const int N = 1010;
int dp[N][N];
int n,V;
int v[N];
int w[N];

int main()
{
    cin>>n>>V;
    for(int i = 1;i <= n;i++)
    {
        cin>>v[i]>>w[i];
    }
    for(int i = 1;i <= n;i++)
    {
        for(int j = 0;j <= V;j++)
        {
            dp[i][j] = dp[i-1][j];
            if(j >= v[i])
            {
                dp[i][j] = max(dp[i][j],dp[i][j-v[i]] + w[i]);
            }
        }
    }
    cout<<dp[n][V]<<endl;

    memset(dp,0,sizeof(dp));
    for(int j = 1;j <= V;j++)
    {
        dp[0][j] = -1;
    }
    for(int i = 1;i <= n;i++)
    {
        for(int j = 0;j <= V;j++)
        {
            dp[i][j] = dp[i-1][j];
            if(j >= v[i] && dp[i][j-v[i]] != -1)
            {
                dp[i][j] = max(dp[i][j],dp[i][j-v[i]] + w[i]);
            }
        }
    }
    cout<<(dp[n][V] == -1 ? 0 : dp[n][V])<<endl;

    return 0;
}

代码解析

4.代码优化

相关推荐
浅念-11 分钟前
C++ string类
开发语言·c++·经验分享·笔记·学习
Purple Coder24 分钟前
基于神经网络的家教系统
学习
Jasmine_llq26 分钟前
《CF833B The Bakery》
动态规划·线段树 + 懒标记·前缀统计·隐含的贪心思想·区间查询(最大值)·区间更新(加法)
寻星探路1 小时前
【前端基础】HTML + CSS + JavaScript 快速入门(三):JS 与 jQuery 实战
java·前端·javascript·css·c++·ai·html
你的冰西瓜1 小时前
2026春晚魔术揭秘——变魔法为物理
算法
忘梓.2 小时前
解锁动态规划的奥秘:从零到精通的创新思维解析(10)
c++·算法·动态规划·代理模式
foolish..2 小时前
动态规划笔记
笔记·算法·动态规划
消失的dk2 小时前
算法---动态规划
算法·动态规划
羑悻的小杀马特2 小时前
【动态规划篇】欣赏概率论与镜像法融合下,别出心裁探索解答括号序列问题
c++·算法·蓝桥杯·动态规划·镜像·洛谷·空隙法
绍兴贝贝2 小时前
代码随想录算法训练营第四十六天|LC647.回文子串|LC516.最长回文子序列|动态规划总结
数据结构·人工智能·python·算法·动态规划·力扣