动态规划-背包问题——[模版]完全背包问题

1.题目解析

题目来源

|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [模版]完全背包_牛客题霸_牛客 |

测试用例

2.算法原理

1.状态表示

与01背包相同,这里的完全背包也是需要一个二维dp表来表示最大价值,具体如下

求最大价值****dp[i][j]:在[1,i]区间选择物品,此时总体积不大于j时的最大价值

求装满时的价值****dp[i][j]:在[1,i]区间选择物品,此时总体积严格等于j时的价值

2.状态转移方程

3.初始化

4.填表顺序

从上至下,每一行从左到右

5.返回值

返回最后一个位置dp表的值

3.实战代码

cpp 复制代码
#include <iostream>
#include <string.h>
using namespace std;
const int N = 1010;
int dp[N][N];
int n,V;
int v[N];
int w[N];

int main()
{
    cin>>n>>V;
    for(int i = 1;i <= n;i++)
    {
        cin>>v[i]>>w[i];
    }
    for(int i = 1;i <= n;i++)
    {
        for(int j = 0;j <= V;j++)
        {
            dp[i][j] = dp[i-1][j];
            if(j >= v[i])
            {
                dp[i][j] = max(dp[i][j],dp[i][j-v[i]] + w[i]);
            }
        }
    }
    cout<<dp[n][V]<<endl;

    memset(dp,0,sizeof(dp));
    for(int j = 1;j <= V;j++)
    {
        dp[0][j] = -1;
    }
    for(int i = 1;i <= n;i++)
    {
        for(int j = 0;j <= V;j++)
        {
            dp[i][j] = dp[i-1][j];
            if(j >= v[i] && dp[i][j-v[i]] != -1)
            {
                dp[i][j] = max(dp[i][j],dp[i][j-v[i]] + w[i]);
            }
        }
    }
    cout<<(dp[n][V] == -1 ? 0 : dp[n][V])<<endl;

    return 0;
}

代码解析

4.代码优化

相关推荐
BlockWay1 分钟前
西甲赛程搬进平台:WEEX以竞猜开启区域合作落地
大数据·人工智能·算法·安全
Asher阿舍技术站41 分钟前
【AI基础学习系列】四、Prompt基础知识
人工智能·学习·prompt
漫雾_1 小时前
两个强制结束进程的方法
c++·驱动开发·安全
HAPPY酷1 小时前
C++ 多线程实战三板斧
java·开发语言·c++·技术美术
CappuccinoRose1 小时前
CSS 语法学习文档(十三)
前端·css·学习·postcss·模块化·预处理器
im_AMBER1 小时前
Leetcode 121 翻转二叉树 | 二叉树中的最大路径和
数据结构·学习·算法·leetcode
fpcc1 小时前
并行编程实战——CUDA编程的Tile
c++·cuda
mit6.8242 小时前
二分+贪心
算法
じ☆冷颜〃2 小时前
随机微分层论:统一代数、拓扑与分析框架下的SPDE论述
笔记·python·学习·线性代数·拓扑学
programhelp_3 小时前
特斯拉 MLE 超详细面经 + 避坑
数据结构·人工智能·算法·面试·职场和发展