动态规划-背包问题——[模版]完全背包问题

1.题目解析

题目来源

|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [模版]完全背包_牛客题霸_牛客 |

测试用例

2.算法原理

1.状态表示

与01背包相同,这里的完全背包也是需要一个二维dp表来表示最大价值,具体如下

求最大价值****dp[i][j]:在[1,i]区间选择物品,此时总体积不大于j时的最大价值

求装满时的价值****dp[i][j]:在[1,i]区间选择物品,此时总体积严格等于j时的价值

2.状态转移方程

3.初始化

4.填表顺序

从上至下,每一行从左到右

5.返回值

返回最后一个位置dp表的值

3.实战代码

cpp 复制代码
#include <iostream>
#include <string.h>
using namespace std;
const int N = 1010;
int dp[N][N];
int n,V;
int v[N];
int w[N];

int main()
{
    cin>>n>>V;
    for(int i = 1;i <= n;i++)
    {
        cin>>v[i]>>w[i];
    }
    for(int i = 1;i <= n;i++)
    {
        for(int j = 0;j <= V;j++)
        {
            dp[i][j] = dp[i-1][j];
            if(j >= v[i])
            {
                dp[i][j] = max(dp[i][j],dp[i][j-v[i]] + w[i]);
            }
        }
    }
    cout<<dp[n][V]<<endl;

    memset(dp,0,sizeof(dp));
    for(int j = 1;j <= V;j++)
    {
        dp[0][j] = -1;
    }
    for(int i = 1;i <= n;i++)
    {
        for(int j = 0;j <= V;j++)
        {
            dp[i][j] = dp[i-1][j];
            if(j >= v[i] && dp[i][j-v[i]] != -1)
            {
                dp[i][j] = max(dp[i][j],dp[i][j-v[i]] + w[i]);
            }
        }
    }
    cout<<(dp[n][V] == -1 ? 0 : dp[n][V])<<endl;

    return 0;
}

代码解析

4.代码优化

相关推荐
sulikey17 分钟前
C++类和对象(下):初始化列表、static、友元、内部类等核心特性详解
c++·static·初始化列表·友元·匿名对象·内部类·编译器优化
oioihoii1 小时前
C++网络编程:从Socket混乱到优雅Reactor的蜕变之路
开发语言·网络·c++
程序员东岸1 小时前
《数据结构——排序(中)》选择与交换的艺术:从直接选择到堆排序的性能跃迁
数据结构·笔记·算法·leetcode·排序算法
程序员-King.1 小时前
day104—对向双指针—接雨水(LeetCode-42)
算法·贪心算法
笨鸟要努力2 小时前
Qt C++ windows 设置系统时间
c++·windows·qt
STLearner2 小时前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘
神仙别闹2 小时前
基于C++实现(控制台)应用递推法完成经典型算法的应用
开发语言·c++·算法
Ayanami_Reii2 小时前
进阶数据结构应用-一个简单的整数问题2(线段树解法)
数据结构·算法·线段树·延迟标记
listhi5203 小时前
基于改进SET的时频分析MATLAB实现
开发语言·算法·matlab
黑客思维者3 小时前
LLM底层原理学习笔记:Adam优化器为何能征服巨型模型成为深度学习的“速度与稳定之王”
笔记·深度学习·学习·llm·adam优化器