动态规划-背包问题——[模版]完全背包问题

1.题目解析

题目来源

|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [模版]完全背包_牛客题霸_牛客 |

测试用例

2.算法原理

1.状态表示

与01背包相同,这里的完全背包也是需要一个二维dp表来表示最大价值,具体如下

求最大价值****dp[i][j]:在[1,i]区间选择物品,此时总体积不大于j时的最大价值

求装满时的价值****dp[i][j]:在[1,i]区间选择物品,此时总体积严格等于j时的价值

2.状态转移方程

3.初始化

4.填表顺序

从上至下,每一行从左到右

5.返回值

返回最后一个位置dp表的值

3.实战代码

cpp 复制代码
#include <iostream>
#include <string.h>
using namespace std;
const int N = 1010;
int dp[N][N];
int n,V;
int v[N];
int w[N];

int main()
{
    cin>>n>>V;
    for(int i = 1;i <= n;i++)
    {
        cin>>v[i]>>w[i];
    }
    for(int i = 1;i <= n;i++)
    {
        for(int j = 0;j <= V;j++)
        {
            dp[i][j] = dp[i-1][j];
            if(j >= v[i])
            {
                dp[i][j] = max(dp[i][j],dp[i][j-v[i]] + w[i]);
            }
        }
    }
    cout<<dp[n][V]<<endl;

    memset(dp,0,sizeof(dp));
    for(int j = 1;j <= V;j++)
    {
        dp[0][j] = -1;
    }
    for(int i = 1;i <= n;i++)
    {
        for(int j = 0;j <= V;j++)
        {
            dp[i][j] = dp[i-1][j];
            if(j >= v[i] && dp[i][j-v[i]] != -1)
            {
                dp[i][j] = max(dp[i][j],dp[i][j-v[i]] + w[i]);
            }
        }
    }
    cout<<(dp[n][V] == -1 ? 0 : dp[n][V])<<endl;

    return 0;
}

代码解析

4.代码优化

相关推荐
xingzhemengyou117 小时前
C语言 查找一个字符在字符串中第i次出现的位置
c语言·算法
Dream it possible!18 小时前
LeetCode 面试经典 150_二分查找_在排序数组中查找元素的第一个和最后一个位置(115_34_C++_中等)
c++·leetcode·面试
wdfk_prog18 小时前
[Linux]学习笔记系列 -- [driver]base
linux·笔记·学习
月光下的麦克19 小时前
如何查案动态库版本
linux·运维·c++
am心19 小时前
学习笔记-套餐接口
笔记·学习
小六子成长记19 小时前
【C++】:搜索二叉树的模拟实现
数据结构·c++·算法
汉克老师19 小时前
GESP2025年9月认证C++二级真题与解析(编程题1(优美的数字))
c++·算法·整除·枚举算法·求余·拆数
科技林总19 小时前
【系统分析师】3.6 操作系统
学习
carver w20 小时前
MFC入门教程 最简版
c++·mfc
王老师青少年编程20 小时前
信奥赛C++提高组csp-s之倍增算法
c++·csp·信奥赛·csp-s·提高组·倍增算法·rmq