RNN深度学习案例:LSTM火灾温度预测

本文为为🔗365天深度学习训练营内部文章

原作者:K同学啊

一 前期准备数据

1.导入数据

python 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler
from keras.layers import Dense,LSTM,Bidirectional
from keras import Input
from keras.optimizers import Adam
from keras.models import Sequential
from sklearn.metrics import mean_squared_error,r2_score
import warnings
warnings.filterwarnings('ignore')

df = pd.read_csv('woodpine2.csv')
print(df)

2.数据可视化

python 复制代码
'''
可视化
'''
fig,ax = plt.subplots(1,3,constrained_layout=True,figsize=(14,3))
sns.lineplot(data=df['Tem1'],ax=ax[0])
sns.lineplot(data=df['CO 1'],ax=ax[1])
sns.lineplot(data=df['Soot 1'],ax=ax[2])
plt.show()

df = df.iloc[:,1:]

二 特征工程

1.构建特征变量和目标变量

python 复制代码
'''
用于从一个 Pandas DataFrame 中提取时间序列数据,生成输入(x)和输出(y)数组,适合用于训练机器学习模型
'''
# 取前八个时间段的Tem、CO 1、Soot 1的数据为X,第九个数据为y
width_x = 8
width_y = 1
x = []
y = []

in_start = 0

for _,_ in df.iterrows():
    in_end = in_start + width_x
    out_end = in_end + width_y

    if out_end < len(df):
        X_ = np.array(df.iloc[in_start:in_end,])
        # 将 X_ 重塑为一维数组,长度为 len(X_) * 3。假设原始数据有多列,这样做的目的是将多列数据展开为一个长数组
        X_ = X_.reshape(len(X_)*3)
        # 0代表只提取第一列
        y_ = np.array(df.iloc[in_end:out_end,0])

        x.append(X_)
        y.append(y_)

    in_start += 1

x = np.array(x)
y = np.array(y)
print(x.shape,y.shape)
复制代码
(5939, 24) (5939, 1)

2.归一化

python 复制代码
'''
归一化
'''
sc = MinMaxScaler(feature_range=(0,1))
x_scaled = sc.fit_transform(x)
# 许多机器学习模型,尤其是 RNN 和 CNN,期望输入数据具有特定的形状。
# 例如,对于 RNN,输入通常是三维的,形状为 (样本数, 时间步数, 特征数)
x_scaled = x_scaled.reshape(len(x_scaled),width_x,3)

3.划分训练集和测试集

python 复制代码
'''
划分训练集
'''
X_train = np.array(x_scaled[:5000]).astype('float64')
y_train = np.array(y[:5000]).astype('float64')
X_test = np.array(x_scaled[5000:]).astype('float64')
y_test = np.array(y[5000:]).astype('float64')
print(X_train.shape,X_test.shape)
复制代码
(5000, 8, 3) (939, 8, 3)

三 构建模型

python 复制代码
'''
构建模型
'''
# 多层LSTM
model_lstm = Sequential()
# units=64: LSTM 单元的数量,决定了模型的学习能力。64 表示该层有 64 个隐藏单元。
# activation='relu': 使用 ReLU 激活函数,帮助引入非线性。虽然 LSTM 通常使用 tanh,但在这里可能是为了与后续层兼容。
# return_sequences=True: 该参数指示 LSTM 层返回每个时间步的输出,而不仅仅是最后一个时间步的输出。这对于后续 LSTM 层是必要的。
# input_shape=(X_train.shape[1], 3): 定义输入数据的形状,其中 X_train.shape[1] 是时间步数(width_x),3 是特征数。
model_lstm.add(LSTM(units=64,activation='relu',return_sequences=True,
                    input_shape=(X_train.shape[1],3)))
# 由于没有设置 return_sequences=True,该层将只返回最后一个时间步的输出,适用于输出层
model_lstm.add(LSTM(units=64,activation='relu'))
# Dense: 添加全连接层。
# width_y: 输出层的单元数,通常与预测的目标变量数量相同。此处表示模型输出的维度。
model_lstm.add(Dense(width_y))
复制代码
Model: "sequential_1"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 lstm_2 (LSTM)               (None, 8, 64)             17408     
                                                                 
 lstm_3 (LSTM)               (None, 64)                33024     
                                                                 
 dense_1 (Dense)             (None, 1)                 65        
                                                                 
=================================================================
Total params: 50,497
Trainable params: 50,497
Non-trainable params: 0
_________________________________________________________________

四 训练模型

python 复制代码
'''
训练
'''
# 只观测loss数值,不观测准确率,所以删去metrics
model_lstm.compile(optimizer=Adam(1e-3),loss='mean_squared_error')

history_lstm = model_lstm.fit(X_train,y_train,
                              batch_size=64,
                              epochs=40,
                              validation_data=(X_test,y_test),
                              validation_freq=1)
复制代码
Epoch 1/40
79/79 [==============================] - 2s 10ms/step - loss: 11291.5254 - val_loss: 4030.8381
Epoch 2/40
79/79 [==============================] - 1s 7ms/step - loss: 105.1108 - val_loss: 621.8700
Epoch 3/40
79/79 [==============================] - 1s 7ms/step - loss: 11.1059 - val_loss: 243.1555
Epoch 4/40
79/79 [==============================] - 1s 7ms/step - loss: 7.8829 - val_loss: 226.2837
Epoch 5/40
79/79 [==============================] - 1s 7ms/step - loss: 7.6028 - val_loss: 244.8176
Epoch 6/40
79/79 [==============================] - 1s 7ms/step - loss: 7.7717 - val_loss: 233.2066
Epoch 7/40
79/79 [==============================] - 1s 7ms/step - loss: 7.5230 - val_loss: 223.5901
Epoch 8/40
79/79 [==============================] - 1s 8ms/step - loss: 7.6082 - val_loss: 186.9205
Epoch 9/40
79/79 [==============================] - 1s 8ms/step - loss: 7.6405 - val_loss: 228.2400
Epoch 10/40
79/79 [==============================] - 1s 7ms/step - loss: 7.8450 - val_loss: 189.5714
Epoch 11/40
79/79 [==============================] - 1s 7ms/step - loss: 7.5957 - val_loss: 225.9814
Epoch 12/40
79/79 [==============================] - 1s 8ms/step - loss: 7.8151 - val_loss: 190.3151
Epoch 13/40
79/79 [==============================] - 1s 7ms/step - loss: 7.5514 - val_loss: 171.3298
Epoch 14/40
79/79 [==============================] - 1s 7ms/step - loss: 7.3661 - val_loss: 213.4320
Epoch 15/40
79/79 [==============================] - 1s 8ms/step - loss: 7.5439 - val_loss: 184.0517
Epoch 16/40
79/79 [==============================] - 1s 8ms/step - loss: 7.5511 - val_loss: 171.2384
Epoch 17/40
79/79 [==============================] - 1s 7ms/step - loss: 8.8873 - val_loss: 234.2241
Epoch 18/40
79/79 [==============================] - 1s 7ms/step - loss: 7.4158 - val_loss: 150.4856
Epoch 19/40
79/79 [==============================] - 1s 7ms/step - loss: 7.5648 - val_loss: 181.1954
Epoch 20/40
79/79 [==============================] - 1s 7ms/step - loss: 7.4036 - val_loss: 142.2856
Epoch 21/40
79/79 [==============================] - 1s 7ms/step - loss: 9.1357 - val_loss: 234.9497
Epoch 22/40
79/79 [==============================] - 1s 7ms/step - loss: 8.1056 - val_loss: 161.9010
Epoch 23/40
79/79 [==============================] - 1s 8ms/step - loss: 8.3753 - val_loss: 194.4306
Epoch 24/40
79/79 [==============================] - 1s 8ms/step - loss: 7.6563 - val_loss: 130.8293
Epoch 25/40
79/79 [==============================] - 1s 8ms/step - loss: 7.2591 - val_loss: 132.0350
Epoch 26/40
79/79 [==============================] - 1s 7ms/step - loss: 7.7230 - val_loss: 160.6877
Epoch 27/40
79/79 [==============================] - 1s 7ms/step - loss: 7.5739 - val_loss: 174.5122
Epoch 28/40
79/79 [==============================] - 1s 7ms/step - loss: 6.6420 - val_loss: 134.3670
Epoch 29/40
79/79 [==============================] - 1s 7ms/step - loss: 8.0128 - val_loss: 186.9790
Epoch 30/40
79/79 [==============================] - 1s 7ms/step - loss: 7.7388 - val_loss: 175.0219
Epoch 31/40
79/79 [==============================] - 1s 8ms/step - loss: 7.2826 - val_loss: 162.1556
Epoch 32/40
79/79 [==============================] - 1s 7ms/step - loss: 7.5271 - val_loss: 179.4215
Epoch 33/40
79/79 [==============================] - 1s 7ms/step - loss: 6.5252 - val_loss: 104.9447
Epoch 34/40
79/79 [==============================] - 1s 7ms/step - loss: 6.6822 - val_loss: 250.2031
Epoch 35/40
79/79 [==============================] - 1s 7ms/step - loss: 7.0211 - val_loss: 95.4579
Epoch 36/40
79/79 [==============================] - 1s 7ms/step - loss: 8.2577 - val_loss: 116.2146
Epoch 37/40
79/79 [==============================] - 1s 7ms/step - loss: 7.5878 - val_loss: 243.1991
Epoch 38/40
79/79 [==============================] - 1s 7ms/step - loss: 11.2559 - val_loss: 390.6861
Epoch 39/40
79/79 [==============================] - 1s 7ms/step - loss: 7.0651 - val_loss: 168.2283
Epoch 40/40
79/79 [==============================] - 1s 7ms/step - loss: 7.6015 - val_loss: 223.1200

五 评估模型

python 复制代码
'''
评估
'''
# loss图
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

plt.figure(figsize=(5,3))
plt.plot(history_lstm.history['loss'],label='LSTM Training Loss')
plt.plot(history_lstm.history['val_loss'],label='LSTM Testing Loss')
plt.title('Training and Testing Loss')
plt.legend()
plt.show()
python 复制代码
# 调用模型预测
pred_y = model_lstm.predict(X_test)
y_test_one = [i for i in y_test]
pred_y_one = [i[0] for i in pred_y]

plt.figure(figsize=(8,6))
plt.plot(y_test_one[:1000],color='red',label='真实值')
plt.plot(pred_y_one[:1000],color='blue',label='预测值')
plt.legend()
plt.show()
python 复制代码
RMSE_lstm = mean_squared_error(pred_y,y_test) ** 0.5
R2_lstm = r2_score(pred_y,y_test)
print('均方差误差:',RMSE_lstm)
print('R2:',R2_lstm)
复制代码
均方差误差: 14.93720339824608
R2: 0.5779344291884085

总结:

捕捉时间序列中的长期依赖性

处理不规则的时间间隔和噪声

建模复杂的非线性关系

动态调整记忆和遗忘

适应性强

相关推荐
惯导马工2 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
隐语SecretFlow3 天前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
木头左3 天前
基于LSTM与3秒级Tick数据的金融时间序列预测实现
人工智能·金融·lstm
Billy_Zuo3 天前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈3 天前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy3 天前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
九章云极AladdinEdu3 天前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
研梦非凡3 天前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
通街市密人有3 天前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
智数研析社3 天前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗