【大数据学习 | flume】flume之常见的channel组件

Channel是连接Source和Sink的组件,大家可以将它看做一个数据的缓冲区(数据队列),它可以将事件暂存到内存中也可以持久化到本地磁盘上, 直到Sink处理完该事件,Flume对于Channel,则提供了Memory Channel、JDBC Chanel、File Channel。

MemoryChannel可以实现高速的吞吐,但是无法保证数据的完整性。

FileChannel保证数据的完整性与一致性。

​ Spillable Memory Channel基于内存和磁盘,内存不够时将数据存储在磁盘中,数据出错恢复时,只恢复磁盘中的数据,还在测试阶段不建议在生产环境用。

1. file channel

bash 复制代码
# file channel

#给agent组件起名
a1.sources=r1
a1.sinks=k1
a1.channels=c1

#定义source
a1.sources.r1.type=netcat
a1.sources.r1.bind=11.90.214.80
a1.sources.r1.port=44444

#定义channel
a1.channels.c1.type=file
a1.channels.c1.dataDirs = /root/filedata

#定义sink
a1.sinks.k1.type=logger
#绑定
a1.sources.r1.channels=c1
a1.sinks.k1.channel=c1

创建数据输出目录

bash 复制代码
mkdir -p /root/filedata

启动flume agent a1 服务端

bash 复制代码
flume-ng agent -n a1 -c /usr/local/flume/conf/ -f ./fileroll.agent -Dflume.root.logger=INFO,console

2. Kafka Channel

将数据存储到kafka中,kafka数据也是存储在磁盘中,并且kafka提供了高可用的功能,数据不会丢失。

重新启动镜像并需要添加kafka的组件。

bash 复制代码
#给agent组件起名
a1.sources=r1
a1.sinks=k1
a1.channels=c1

#定义source
a1.sources.r1.type=netcat
a1.sources.r1.bind=11.90.214.80
a1.sources.r1.port=44444

#定义channel
a1.channels.c1.type = org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c1.kafka.bootstrap.servers = kafka-1:9092,kafka-2:9092,kafka-3:9092
a1.channels.c1.kafka.topic = hainiu
a1.channels.c1.kafka.consumer.group.id = flume-consumer

#定义sink
a1.sinks.k1.type=logger
#绑定
a1.sources.r1.channels=c1
a1.sinks.k1.channel=c1

启动flume agent a1 服务端

bash 复制代码
flume-ng agent -n a1 -c /usr/local/flume/conf/ -f ./kafkachannel.agent -Dflume.root.logger=INFO,console

测试kafka中是否存储flume收集过来的数据:

启动kafka消费者消费指定分区的数据

bash 复制代码
#创建主题
./kafka-topics.sh --zookeeper11.99.16.105:2181 --create --topic hainiu --replication-factor 1 --partitions 1
#生产者生产数据
./kafka-console-producer.sh --broker-list 11.99.16.105:9092--topic hainiu
#消费者消费数据
kafka-console-consumer.sh --bootstrap-server 11.99.16.105:9092 --topic hainiu

通过telnet向flume监听的端口发数据

flume logger sink将数据打印在控制台

相关推荐
Data跳动4 小时前
Spark内存都消耗在哪里了?
大数据·分布式·spark
南宫生4 小时前
力扣-图论-17【算法学习day.67】
java·学习·算法·leetcode·图论
sanguine__5 小时前
Web APIs学习 (操作DOM BOM)
学习
woshiabc1115 小时前
windows安装Elasticsearch及增删改查操作
大数据·elasticsearch·搜索引擎
lucky_syq5 小时前
Saprk和Flink的区别
大数据·flink
lucky_syq5 小时前
流式处理,为什么Flink比Spark Streaming好?
大数据·flink·spark
袋鼠云数栈5 小时前
深入浅出Flink CEP丨如何通过Flink SQL作业动态更新Flink CEP作业
大数据
数据的世界017 小时前
.NET开发人员学习书籍推荐
学习·.net
小白学大数据7 小时前
如何使用Selenium处理JavaScript动态加载的内容?
大数据·javascript·爬虫·selenium·测试工具
四口鲸鱼爱吃盐7 小时前
CVPR2024 | 通过集成渐近正态分布学习实现强可迁移对抗攻击
学习