【大数据学习 | Spark】yarn-client与yarn-cluster的区别

1. yarn的提交命令

bash 复制代码
# yarn的提交命令参数
--master yarn #执行集群
--deploy-mode # 部署模式
--class #指定运行的类
--executor-memory #指定executor的内存
--executor-cores # 指定核数
--num-executors # 直接指定executor的数量
--queue # 指定队列

2. yarn-client模式

该模式下driver端存在于client客户端。

是driver端是独立于 yarn集群的,运算的时候,driver端需要管理executor 中task的运行,所以driver端(客户端)是不能离开的。

driver端在客户端上,所以好调试日志。

当在客户端提交多个spark应用时,它会对客户端造成很大的网络压力,yarn-client模式只适合 交互式环境开发。

运行期间不能断开客户端的链接,不然driver端死掉。task任务不能顺利执行。

3. yarn-cluster模式

driver端是在APPMater节点,是在yarn集群里面 ,那运行和监控executor 的任务都是在yarn集群里面。yarn提交任务的客户端是可以离开的。

driver端在yarn集群里面,所以不好调试日志。客户端一经提交可以离开,常用于正常的提交应用,适合生产环境。

集群模式是不支持spark-shell的

bash 复制代码
spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--queue hainiu \
--deploy-mode cluster \
/usr/local/spark/examples/jars/spark-examples_2.12-3.1.2.jar \
20000

4. spark on yarn 提交流程

当spark在yarn上运行时,yarn要拿到 3样:

1)运行用的配置

2)运行要依赖的jar包

默认是SPARK_HOME/jars 目录下的jar包打包

如果想加入其它jar包,可通过 --jars 添加

3)运行任务的jar包(带有代码的jar包)

这3样需要从提交程序端 上传到 /user/xxx/.sparkStaging/yarnid/目录下(分布式缓存),然后再分发到运行任务的计算节点。

相关推荐
一介草民丶19 分钟前
Mysql | 主从复制的工作机制
数据库·mysql·oracle
简单的心13 小时前
window部署虚拟机VirtualBox来部署flink
大数据·windows·flink
前端(从入门到入土)4 小时前
uniapp加载json动画
uni-app·json
碳基学AI5 小时前
北京大学DeepSeek内部研讨系列:AI在新媒体运营中的应用与挑战|122页PPT下载方法
大数据·人工智能·python·算法·ai·新媒体运营·产品运营
viperrrrrrrrrr75 小时前
大数据学习(105)-Hbase
大数据·学习·hbase
SeaTunnel5 小时前
【同步教程】基于Apache SeaTunnel从MySQL同步到MySQL——Demo方舟计划
大数据·人工智能·apache·etl
小冻梨!!!6 小时前
aspark 配置2
spark
不辉放弃7 小时前
SQL 主键(Primary Key)
数据库·sql·oracle
qq_339282237 小时前
PostgreSQL-常用命令
数据库·postgresql·oracle