【大数据学习 | Spark】yarn-client与yarn-cluster的区别

1. yarn的提交命令

bash 复制代码
# yarn的提交命令参数
--master yarn #执行集群
--deploy-mode # 部署模式
--class #指定运行的类
--executor-memory #指定executor的内存
--executor-cores # 指定核数
--num-executors # 直接指定executor的数量
--queue # 指定队列

2. yarn-client模式

该模式下driver端存在于client客户端。

是driver端是独立于 yarn集群的,运算的时候,driver端需要管理executor 中task的运行,所以driver端(客户端)是不能离开的。

driver端在客户端上,所以好调试日志。

当在客户端提交多个spark应用时,它会对客户端造成很大的网络压力,yarn-client模式只适合 交互式环境开发。

运行期间不能断开客户端的链接,不然driver端死掉。task任务不能顺利执行。

3. yarn-cluster模式

driver端是在APPMater节点,是在yarn集群里面 ,那运行和监控executor 的任务都是在yarn集群里面。yarn提交任务的客户端是可以离开的。

driver端在yarn集群里面,所以不好调试日志。客户端一经提交可以离开,常用于正常的提交应用,适合生产环境。

集群模式是不支持spark-shell的

bash 复制代码
spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--queue hainiu \
--deploy-mode cluster \
/usr/local/spark/examples/jars/spark-examples_2.12-3.1.2.jar \
20000

4. spark on yarn 提交流程

当spark在yarn上运行时,yarn要拿到 3样:

1)运行用的配置

2)运行要依赖的jar包

默认是SPARK_HOME/jars 目录下的jar包打包

如果想加入其它jar包,可通过 --jars 添加

3)运行任务的jar包(带有代码的jar包)

这3样需要从提交程序端 上传到 /user/xxx/.sparkStaging/yarnid/目录下(分布式缓存),然后再分发到运行任务的计算节点。

相关推荐
Light605 小时前
点燃变革:领码SPARK融合平台如何重塑OA,开启企业智慧协同新纪元?
大数据·分布式·spark
Guheyunyi5 小时前
智慧消防管理系统如何重塑安全未来
大数据·运维·服务器·人工智能·安全
未来魔导5 小时前
go语言中json操作总结
数据分析·go·json
写代码的【黑咖啡】6 小时前
如何在大数据数仓中搭建数据集市
大数据·分布式·spark
华清远见成都中心6 小时前
成都理工大学&华清远见成都中心实训,助力电商人才培养
大数据·人工智能·嵌入式
梦里不知身是客117 小时前
flume防止数据丢失的方法
大数据·flume
Li.CQ7 小时前
SQL学习笔记(二)
笔记·sql·学习
川石课堂软件测试8 小时前
Mysql中触发器使用详详详详详解~
数据库·redis·功能测试·mysql·oracle·单元测试·自动化
鹏说大数据9 小时前
数据治理项目实战系列6-数据治理架构设计实战,流程 + 工具双架构拆解
大数据·数据库·架构
白衣衬衫 两袖清风9 小时前
SQL联查案例
数据库·sql