【大数据学习 | Spark】yarn-client与yarn-cluster的区别

1. yarn的提交命令

bash 复制代码
# yarn的提交命令参数
--master yarn #执行集群
--deploy-mode # 部署模式
--class #指定运行的类
--executor-memory #指定executor的内存
--executor-cores # 指定核数
--num-executors # 直接指定executor的数量
--queue # 指定队列

2. yarn-client模式

该模式下driver端存在于client客户端。

是driver端是独立于 yarn集群的,运算的时候,driver端需要管理executor 中task的运行,所以driver端(客户端)是不能离开的。

driver端在客户端上,所以好调试日志。

当在客户端提交多个spark应用时,它会对客户端造成很大的网络压力,yarn-client模式只适合 交互式环境开发。

运行期间不能断开客户端的链接,不然driver端死掉。task任务不能顺利执行。

3. yarn-cluster模式

driver端是在APPMater节点,是在yarn集群里面 ,那运行和监控executor 的任务都是在yarn集群里面。yarn提交任务的客户端是可以离开的。

driver端在yarn集群里面,所以不好调试日志。客户端一经提交可以离开,常用于正常的提交应用,适合生产环境。

集群模式是不支持spark-shell的

bash 复制代码
spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--queue hainiu \
--deploy-mode cluster \
/usr/local/spark/examples/jars/spark-examples_2.12-3.1.2.jar \
20000

4. spark on yarn 提交流程

当spark在yarn上运行时,yarn要拿到 3样:

1)运行用的配置

2)运行要依赖的jar包

默认是SPARK_HOME/jars 目录下的jar包打包

如果想加入其它jar包,可通过 --jars 添加

3)运行任务的jar包(带有代码的jar包)

这3样需要从提交程序端 上传到 /user/xxx/.sparkStaging/yarnid/目录下(分布式缓存),然后再分发到运行任务的计算节点。

相关推荐
Coder_Boy_10 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
2501_9449347310 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
九河云11 小时前
5秒开服,你的应用部署还卡在“加载中”吗?
大数据·人工智能·安全·机器学习·华为云
Gain_chance11 小时前
36-学习笔记尚硅谷数仓搭建-DWS层数据装载脚本
大数据·数据仓库·笔记·学习
数据知道12 小时前
PostgreSQL 故障排查:如何找出数据库中最耗时的 SQL 语句
数据库·sql·postgresql
每日新鲜事12 小时前
热销复盘:招商林屿缦岛203套售罄背后的客户逻辑分析
大数据·人工智能
枷锁—sha12 小时前
【SRC】SQL注入WAF 绕过应对策略(二)
网络·数据库·python·sql·安全·网络安全
AI架构全栈开发实战笔记13 小时前
Eureka 在大数据环境中的性能优化技巧
大数据·ai·eureka·性能优化
AI架构全栈开发实战笔记13 小时前
Eureka 对大数据领域服务依赖关系的梳理
大数据·ai·云原生·eureka
自挂东南枝�13 小时前
政企舆情大数据服务平台的“全域洞察中枢”
大数据