生成式语言模型 三范式 预训练、微调、强化反馈学习

ChatGPT 是一种典型的大语言模型,其训练过程可以分为预训练微调和**强化学习(RLHF)**这三个主要阶段。以下是对这些阶段的详细讲解:


1. 预训练(Pretraining)

目标:让模型掌握基本的语言理解与生成能力。

  • 数据来源

    预训练通常使用大量的通用文本数据,包括书籍、文章、维基百科等网络上的公开文本。数据经过清理,以确保质量和多样性。

  • 方法

    模型通过一个自回归目标进行训练,即预测给定上下文中下一个单词的概率。

    公式表示为:

    P(w_t\|w_{t-1}, w_{t-2}, ..., w_1)

    这里,(w_t) 是当前词,(w_{t-1}), (w_{t-2}) 等是之前的词。

  • 模型能力

    通过预训练,模型学习到广泛的语言模式、语法规则以及某些世界知识。此阶段的结果是一个具备通用语言处理能力的大模型。


2. 微调(Fine-Tuning)

目标:使模型在特定任务或领域上表现更优。

  • 数据来源

    使用更小但标注精细的数据集,例如对话数据或特定领域的文本数据。这些数据集通常由人工标注,以确保模型输出符合目标需求。

  • 方法

    在已有的预训练模型基础上,通过监督学习调整参数。

    • 模型输入:上下文(如用户问题)。
    • 模型输出:根据标注提供的理想答案。
    • 损失函数:计算模型输出和理想答案之间的误差,进行参数更新。
  • 实例

    微调后的 ChatGPT 能更好地理解对话情境,生成连贯且上下文相关的回答。


3. 强化学习(强化反馈学习,RLHF)

目标:优化模型生成的内容,使其更符合人类偏好。

  • 过程

    RLHF(Reinforcement Learning with Human Feedback)是一个结合人类反馈与强化学习的过程。具体包括以下步骤:

    1) 创建奖励模型(Reward Model):

    • 人类评审员对模型生成的多组回答进行排序(如回答 A 比回答 B 更好)。
    • 训练一个奖励模型来模仿这种排序,从而量化模型输出的"好坏"。

    2) 强化学习优化:

    • 使用奖励模型为 ChatGPT 的输出分配奖励分数。
    • 通过强化学习算法(如策略梯度法,Proximal Policy Optimization, PPO),优化模型生成的内容,使其在奖励模型上得分更高。
  • 好处

    • 输出更符合人类审美和伦理要求。
    • 减少毒性语言、不相关内容以及逻辑混乱的回答。

总结

  1. 预训练提供通用语言能力。
  2. 微调调整模型以适应特定任务。
  3. 强化反馈学习通过人类反馈进一步优化,提升用户体验。

这种三阶段训练流程结合了大规模数据、精细标注和人类反馈,是当前先进语言模型性能的关键所在。

相关推荐
-一杯为品-21 分钟前
【强化学习】#7 基于表格型方法的规划和学习
学习·强化学习
liuyang-neu26 分钟前
目标检测 RT-DETR(2023)详细解读
人工智能·目标检测·计算机视觉
AI算法工程师Moxi28 分钟前
目标检测基础知识
人工智能·目标检测·计算机视觉
大数据张老师36 分钟前
解码AI:2025年人工智能技术发展全景图
javascript·css·人工智能
白熊1881 小时前
【图像大模型】AnimateDiff:基于扩散模型的视频生成技术解析与实践指南
人工智能·算法·音视频
几个几个n1 小时前
Matlab入门
开发语言·人工智能·matlab
真的想上岸啊1 小时前
学习STC51单片机14(芯片为STC89C52RC)
单片机·嵌入式硬件·学习
天天爱吃肉82181 小时前
【 大模型技术驱动智能网联汽车革命:关键技术解析与未来趋势】
语言模型·汽车·llama
Allen_LVyingbo1 小时前
传统医疗系统文档集中标准化存储和AI智能化更新路径分析
数据库·人工智能
hello1114-1 小时前
Redis学习打卡-Day6-Redis 高可用(上)
数据库·redis·学习