opencv(c++)---自带的卷积运算filter2D以及应用

opencv(c++)---自带的卷积运算filter2D以及应用

c++ 复制代码
#include <opencv2/opencv.hpp>
#include<iostream>

using namespace cv;
using namespace std;

int main()
{
	Mat imgin, imgout;
	imgin = imread("D:/1234.png");
	if (imgin.empty())
	{
		cout << "Could not open or find the image!\n" << endl;
		return -1;
	}
	imshow("原图", imgin);
	Mat kernel = (Mat_<float>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);
    //创建一个3x3的卷积核。这个特定的卷积核是一个锐化卷积核,它的形式可以增强图像的边缘,使图像看起来更加清晰。
	filter2D(imgin, imgout,imgin.depth(), kernel); //使用filter2D函数进行卷积操作
    // 使用 filter2D 函数对输入图像 imgin 进行卷积操作,输出结果存入 imgout 中。
	//imgin.depth() 指定输出图像的深度与输入图像相同。
	imshow("original image", imgin);
	waitKey(0);
	return 0;
}
OpenCV自带的卷积运算有广泛的应用,以下是一些主要的应用场景:
  1. 图像滤波
    • 卷积运算常用于图像平滑,使用均值滤波、Gaussian滤波等方法来减少图像噪声。
    • 例如:应用高斯滤波器可以有效地去除图像中的高频噪声。
  2. 边缘检测
    • 使用卷积可以实现边缘检测操作,如Sobel算子、Prewitt算子和拉普拉斯算子。这些算子帮助提取图像中的边缘信息。
    • 例如:通过应用Sobel算子,可以得到图像在水平和垂直方向上的边缘。
  3. 特征提取
    • 在计算机视觉中,可以使用卷积运算提取图像特征,比如角点、纹理等。这些特征对后续的图像分析和分类任务非常重要。
  4. 图像模糊
    • 应用卷积核可以实现图像模糊效果,用于拍照后处理或艺术效果生成。
  5. 图像锐化
    • 特定的卷积核可以增强图像细节,提高图像的锐度。这对细节特征的突出很有帮助。
  6. 模板匹配
    • 通过卷积,可以在图像中寻找特定的图案或模板,用于对象识别和检测。
  7. 图像转换
    • 可以通过卷积运算实现图像的几何变换,比如旋转、缩放和扭曲等。
  8. 卷积神经网络(CNN)
    • 在深度学习中,卷积运算是卷积神经网络的核心,广泛应用于图像分类、目标检测、语义分割等任务。

    • 在深度学习中,卷积运算是卷积神经网络的核心,广泛应用于图像分类、目标检测、语义分割等任务。

总之,卷积运算在图像处理和计算机视觉领域中占据着重要地位,是许多基础算法和高级技术的核心组成部分。

相关推荐
Coder_Boy_16 分钟前
基于SpringAI的在线考试系统-数据库 表结构 & 完整外键依赖关系梳理
java·数据库·人工智能·软件工程
小旋风0123425 分钟前
前端对接豆包AI(vue2版本)
前端·人工智能
数字游民952725 分钟前
推荐一个自带流量加成的小程序接口
人工智能·ai·小程序
z203483152029 分钟前
AI模型部署草稿
人工智能·单片机·嵌入式硬件
全栈开发圈30 分钟前
干货分享|AI Agent全链路开发
人工智能
雾岛听蓝35 分钟前
理解C++多态
开发语言·c++
朔北之忘 Clancy35 分钟前
第二章 分支结构程序设计(2)
c++·算法·青少年编程·竞赛·教材·考级·讲义
阿湯哥36 分钟前
Agent、Skill、Tool、LLM 的四层关系与协同逻辑
人工智能
南_山无梅落39 分钟前
create_deep_agent vs create_agent 的区别
人工智能·langchain·deepagent
小屁猪qAq40 分钟前
设计模式的基石
开发语言·c++·设计模式