大数据-231 离线数仓 - DWS 层、ADS 层的创建 Hive 执行脚本

点一下关注吧!!!非常感谢!!持续更新!!!

Java篇开始了!

目前开始更新 MyBatis,一起深入浅出!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(已更完)
  • ClickHouse(已更完)
  • Kudu(已更完)
  • Druid(已更完)
  • Kylin(已更完)
  • Elasticsearch(已更完)
  • DataX(已更完)
  • Tez(已更完)
  • 数据挖掘(已更完)
  • Prometheus(已更完)
  • Grafana(已更完)
  • 离线数仓(正在更新...)

章节内容

上节我们完成了如下的内容:

  • ODS层的构建 Hive处理
  • UDF 处理
  • SerDe 处理
  • 当前总结

活跃会员

  • 活跃会员:打开应用的会员即为活跃会员
  • 新增会员:第一次使用英勇的会员,定义为新增会员
  • 留存会员:某段时间新增会员,经过一段时间后,仍继续使用应用认为是留存会员
  • 活跃会员的指标需求:每日、每周、每月的活跃会员数

DWD:会员的每日启动信息明细(会员都是活跃会员,某个会员可能会出现多次)

DWS:每日活跃会员信息(关键)、每周活跃会员信息、每月活跃会员信息

每日活跃会员信息 => 每周活跃会员信息

每日活跃会员信息 => 每月活跃会员信息

ADS:每日、每周、每月活跃会员数(输出)

shell 复制代码
ADS表结构:daycnt weekcnt monthcnt dt

备注:周、月为自然周、自然月

处理过程:

  • 建表(每日、每周、每月活跃会员信息)
  • 每日启动明细 => 每日活跃会员
  • 每日活跃会员 => 每周活跃会员;每日活跃会员 => 每月活跃会员
  • 汇总生成ADS层的数据

创建DWS层表

DWS作用

统一数据模型

将原始数据(ODS层)按照一定的逻辑模型进行整合、清洗、加工,形成标准化的数据结构。

支持对数据的多维度、多粒度分析。

支持业务场景

满足企业对历史数据的查询和分析需求。

支持 OLAP(在线分析处理)操作,如聚合查询、钻取和切片。

数据细化与分类

将数据按照主题域(如销售、财务、库存等)分类,便于管理和查询。

通常保持较高的细节粒度,便于灵活扩展。

数据准确性与一致性

经过处理的数据经过校验,确保逻辑关系正确,能够为下游提供准确的一致性数据。

编写脚本

启动Hive,进行执行:

java 复制代码
use dws;
drop table if exists dws.dws_member_start_day;
create table dws.dws_member_start_day
(
  `device_id` string,
  `uid` string,
  `app_v` string,
  `os_type` string,
  `language` string,
  `channel` string,
  `area` string,
  `brand` string
) COMMENT '会员日启动汇总'
partitioned by(dt string)
stored as parquet;
drop table if exists dws.dws_member_start_week;
create table dws.dws_member_start_week(
  `device_id` string,
  `uid` string,
  `app_v` string,
  `os_type` string,
  `language` string,
  `channel` string,
  `area` string,
  `brand` string,
  `week` string
) COMMENT '会员周启动汇总'
PARTITIONED BY (`dt` string)
stored as parquet;
drop table if exists dws.dws_member_start_month;
create table dws.dws_member_start_month(
  `device_id` string,
  `uid` string,
  `app_v` string,
  `os_type` string,
  `language` string,
  `channel` string,
  `area` string,
  `brand` string,
  `month` string
) COMMENT '会员月启动汇总'
PARTITIONED BY (`dt` string)
stored as parquet;

执行结果如下图所示:

加载DWS层数据

shell 复制代码
vim /opt/wzk/hive/dws_load_member_start.sh

写入的内容如下所示:

shell 复制代码
#!/bin/bash
source /etc/profile
# 可以输入日期;如果未输入日期取昨天的时间
if [ -n "$1" ]
then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
# 定义要执行的SQL
# 汇总得到每日活跃会员信息;每日数据汇总得到每周、每月数据
sql="
insert overwrite table dws.dws_member_start_day
partition(dt='$do_date')
select device_id,
concat_ws('|', collect_set(uid)),
concat_ws('|', collect_set(app_v)),
concat_ws('|', collect_set(os_type)),
concat_ws('|', collect_set(language)),
concat_ws('|', collect_set(channel)),
concat_ws('|', collect_set(area)),
concat_ws('|', collect_set(brand))
from dwd.dwd_start_log
where dt='$do_date'
group by device_id;
-- 汇总得到每周活跃会员
insert overwrite table dws.dws_member_start_week
partition(dt='$do_date')
select device_id,
concat_ws('|', collect_set(uid)),
concat_ws('|', collect_set(app_v)),
concat_ws('|', collect_set(os_type)),
concat_ws('|', collect_set(language)),
concat_ws('|', collect_set(channel)),
concat_ws('|', collect_set(area)),
concat_ws('|', collect_set(brand)),
date_add(next_day('$do_date', 'mo'), -7)
from dws.dws_member_start_day
where dt >= date_add(next_day('$do_date', 'mo'), -7)
and dt <= '$do_date'
group by device_id;
-- 汇总得到每月活跃会员
insert overwrite table dws.dws_member_start_month
partition(dt='$do_date')
select device_id,
concat_ws('|', collect_set(uid)),
concat_ws('|', collect_set(app_v)),
concat_ws('|', collect_set(os_type)),
concat_ws('|', collect_set(language)),
concat_ws('|', collect_set(channel)),
concat_ws('|', collect_set(area)),
concat_ws('|', collect_set(brand)),
date_format('$do_date', 'yyyy-MM')
from dws.dws_member_start_day
where dt >= date_format('$do_date', 'yyyy-MM-01')
and dt <= '$do_date'
group by device_id;
"
hive -e "$sql"

注意Shell的引号。

写入的内容如下图所示:

ODS => DWD => DWS(每日、每周、每月活跃会员的汇总表)

创建ADS层表

ADS 作用

聚合和简化数据

将 DWS 层中多表、多主题域的数据聚合成简单易用的表或视图。

直接输出满足业务需求的数据结果。

面向业务应用

通过设计宽表或高性能视图,直接支持具体的业务场景和报表需求。

响应快速查询需求,如实时数据的展示。

数据分发与集成

为前端的 BI 工具、报表系统或 API 服务提供高效的查询接口。

能够通过缓存机制或物化视图加速查询性能。

轻量化与高性能

尽量减少数据量,保留业务最关心的关键指标。

采用预聚合、预计算等技术提升查询效率。

计算当天、当周、当月活跃会员数量

sql 复制代码
drop table if exists ads.ads_member_active_count;
create table ads.ads_member_active_count(
  `day_count` int COMMENT '当日会员数量',
  `week_count` int COMMENT '当周会员数量',
  `month_count` int COMMENT '当月会员数量'
) COMMENT '活跃会员数'
partitioned by(dt string)
row format delimited fields terminated by ',';

执行结果如下图所示:

加载ADS层数据

shell 复制代码
vim /opt/wzk/hive/ads_load_memeber_active.sh

写入的内容如下:

sql 复制代码
#!/bin/bash
source /etc/profile
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
with tmp as(
  select 'day' datelabel, count(*) cnt, dt
  from dws.dws_member_start_day
  where dt='$do_date'
  group by dt
  union all
  select 'week' datelabel, count(*) cnt, dt
  from dws.dws_member_start_week
  where dt='$do_date'
  group by dt
  union all
  select 'month' datelabel, count(*) cnt, dt
  from dws.dws_member_start_month
  where dt='$do_date'
  group by dt
)
insert overwrite table ads.ads_member_active_count
partition(dt='$do_date')
select sum(case when datelabel='day' then cnt end) as
day_count,
sum(case when datelabel='week' then cnt end) as
week_count,
sum(case when datelabel='month' then cnt end) as
month_count
from tmp
group by dt;
"
hive -e "$sql"

写入内容如下图所示:

这里有一个同样功能的脚本,可以参考对比以下:

shell 复制代码
vim /opt/wzk/hive/ads_load_memeber_active2.sh

写入内容如下:

sql 复制代码
#!/bin/bash
source /etc/profile
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table ads.ads_member_active_count
partition(dt='$do_date')
select daycnt, weekcnt, monthcnt
from (select dt, count(*) daycnt
      from dws.dws_member_start_day
      where dt='$do_date'
      group by dt
     ) day join
(select dt, count(*) weekcnt
 from dws.dws_member_start_week
 where dt='$do_date'
 group by dt
) week on day.dt=week.dt
join
(select dt, count(*) monthcnt
 from dws.dws_member_start_month
 where dt='$do_date'
 group by dt
) month on day.dt=month.dt;
"
hive -e "$sql"

写入内容如下图所示:

  • 第一个脚本:通过构建临时表(WITH tmp AS (...))将不同维度的数据(天、周、月)汇总到一个临时表中,再通过 SUM 计算出最终的统计结果。这种方式的灵活性较高,便于扩展。
  • 第二个脚本:直接通过 JOIN 不同的子查询,将天、周、月三个维度的数据联结在一起,最后插入目标表。这种方式在性能上可能更高效,但扩展性稍差。
相关推荐
以后不吃煲仔饭3 分钟前
Java基础夯实——2.7 线程上下文切换
java·开发语言
soso19684 分钟前
DataWorks快速入门
大数据·数据仓库·信息可视化
进阶的架构师4 分钟前
2024年Java面试题及答案整理(1000+面试题附答案解析)
java·开发语言
The_Ticker9 分钟前
CFD平台如何接入实时行情源
java·大数据·数据库·人工智能·算法·区块链·软件工程
java1234_小锋14 分钟前
Elasticsearch中的节点(比如共20个),其中的10个选了一个master,另外10个选了另一个master,怎么办?
大数据·elasticsearch·jenkins
Elastic 中国社区官方博客15 分钟前
Elasticsearch 开放推理 API 增加了对 IBM watsonx.ai Slate 嵌入模型的支持
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
我的运维人生16 分钟前
Elasticsearch实战应用:构建高效搜索与分析平台
大数据·elasticsearch·jenkins·运维开发·技术共享
大数据编程之光32 分钟前
Flink Standalone集群模式安装部署全攻略
java·大数据·开发语言·面试·flink
B站计算机毕业设计超人34 分钟前
计算机毕业设计SparkStreaming+Kafka旅游推荐系统 旅游景点客流量预测 旅游可视化 旅游大数据 Hive数据仓库 机器学习 深度学习
大数据·数据仓库·hadoop·python·kafka·课程设计·数据可视化
爪哇学长1 小时前
双指针算法详解:原理、应用场景及代码示例
java·数据结构·算法