torch张量与函数表达式写法

如何表达x y x^2y

通常一个输入是成批的,即有batch个样本为一组一起输入

input.shape为------(batch,input_length)

input_length通常为变量的长度,例:二元函数,input length=2

5个一组,二元函数,输入为(5,2)

张量input=

|----|----|
| x1 | y1 |
| x2 | y2 |
| x3 | y3 |
| x4 | y4 |
| x5 | y5 |

提取x向量:x=input[:,0]

提取x向量:y=input[:,1]

之后就是随心所欲地带入表达式来

x^2y= x**2*y

torch.stack,dim是沿着哪个方向堆叠

torch.stack 是 PyTorch 中的一个函数,用于将一系列张量沿着一个新的维度堆叠起来。这个新维度是用户指定的,它将成为返回张量的一个维度。

以下是 torch.stack 的基本用法:

复制代码
torch.stack(tensors, dim=0, out=None) -> Tensor
  • tensors: 一个张量序列。所有的张量都应该有相同的形状。
  • dim: 新的堆叠维度。这个维度将位于返回张量的第 dim 个位置。
  • out: (可选)输出张量。

例子

假设我们有三个形状为 (2, 3) 的张量,我们想要将它们沿着一个新的维度堆叠起来。

复制代码
import torch

# 创建三个形状为 (2, 3) 的张量
t1 = torch.tensor([[1, 2, 3], [4, 5, 6]])
t2 = torch.tensor([[7, 8, 9], [10, 11, 12]])
t3 = torch.tensor([[13, 14, 15], [16, 17, 18]])

# 将它们沿着一个新的维度堆叠起来
# 这里 dim=0,意味着新维度将位于最前面
stacked = torch.stack((t1, t2, t3), dim=0)

print(stacked)

tensor([[[ 1,  2,  3],
         [ 4,  5,  6]],

        [[ 7,  8,  9],
         [10, 11, 12]],

        [[13, 14, 15],
         [16, 17, 18]]])

返回的张量 stacked 的形状是 (3, 2, 3)。这是因为我们沿着新的第一个维度(dim=0)堆叠了三个形状为 (2, 3) 的张量。

如果我们想要沿着第二个维度堆叠,可以这样操作:

复制代码
# 将它们沿着第二个维度堆叠起来
stacked = torch.stack((t1, t2, t3), dim=1)

print(stacked)

输出将是:

复制代码
tensor([[[ 1,  2,  3],
         [ 7,  8,  9],
         [13, 14, 15]],

        [[ 4,  5,  6],
         [10, 11, 12],
         [16, 17, 18]]])

在这个例子中,返回的张量 stacked 的形状是 (2, 3, 3),因为我们沿着第二个维度(dim=1)堆叠了三个张量。

注意,所有被堆叠的张量必须具有相同的形状,否则 torch.stack 将无法执行。

torch里的autograd里的jacobi求法

1.x的shape为(a,b),f(x)输出为(c,)长度的向量。

autograd.functional.jacobian(f, x, create_graph=create_graph)输出形状是什么?

答案是:(c,a,b)

2.x的shape为(a,b),f(x)输出为(a,c)

autograd.functional.jacobian(f, x, create_graph=create_graph)输出形状是什么?

答案是(a,c,a,b)

python 复制代码
import torch
from torch.autograd.functional import jacobian

# 假设 f 是一个函数,它接受一个形状为 (a, b) 的张量 x,并输出一个形状为 (c,) 的张量
def f(x):
    # (x2+y2+xy,x2+y,y3)
    fx=x[:,0],x[:,1],x[:,0]*x[:,1]#x[:,0]**2+x[:,1]**2+x[:,0]*x[:,1],x[:,0]**2+x[:,1],x[:,1]**3
    op=torch.stack(fx,dim=1)#为了让第一个维度为batch,dim取1表示横着排列
#     print("op.shape",op.shape)
#     op_sum=op.sum(dim=0)#让
#     print("op_Sum.shape",op_sum.shape)
    return op
    
# 假设 x 的形状为 (a, b)
a, b = 5, 2  # 示例维度
x = torch.randn(a, b)

# 计算 f 在 x 处的雅可比矩阵
J = jacobian(f, x)
print(x.shape)

print(f(x).shape)
# 检查雅可比矩阵的形状
print(J.shape)  # 应该输出 (c, a, b)

输出------

复制代码
torch.Size([5, 2])
torch.Size([5, 3])
torch.Size([5, 3, 5, 2])

这样比较乱,通常将不同批次的相同变量相加(dim=0de)

,,)得到的这个东西去求jacobi,由于相加互不影响,结果是一样的

,减少计算了。

python 复制代码
import torch
from torch.autograd.functional import jacobian

# 假设 f 是一个函数,它接受一个形状为 (a, b) 的张量 x,并输出一个形状为 (c,) 的张量
def f(x):
    # (x2+y2+xy,x2+y,y3)
    fx=x[:,0],x[:,1],x[:,0]*x[:,1]#x[:,0]**2+x[:,1]**2+x[:,0]*x[:,1],x[:,0]**2+x[:,1],x[:,1]**3
    op=torch.stack(fx,dim=1)#为了让第一个维度为batch,dim取1表示横着排列
#     print("op.shape",op.shape)
    op_sum=op.sum(dim=0)#让不同批次同一位置的向量相加
#     print("op_Sum.shape",op_sum.shape)
    return op_sum
    
# 假设 x 的形状为 (a, b)
a, b = 5, 2  # 示例维度
x = torch.randn(a, b)

# 计算 f 在 x 处的雅可比矩阵
J = jacobian(f, x)
print(x.shape)

print(f(x).shape)
# 检查雅可比矩阵的形状
print(J.shape)  # 应该输出 (c, a, b)

输出

复制代码
torch.Size([5, 2])
torch.Size([3])
torch.Size([3, 5, 2])

f是(x,y,xy),J是如是算出的jacobi矩阵

相关推荐
「、皓子~6 分钟前
后台管理系统的诞生 - 利用AI 1天完成整个后台管理系统的微服务后端+前端
前端·人工智能·微服务·小程序·go·ai编程·ai写作
笑衬人心。40 分钟前
初学Spring AI 笔记
人工智能·笔记·spring
luofeiju1 小时前
RGB下的色彩变换:用线性代数解构色彩世界
图像处理·人工智能·opencv·线性代数
测试者家园1 小时前
基于DeepSeek和crewAI构建测试用例脚本生成器
人工智能·python·测试用例·智能体·智能化测试·crewai
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | Call Me Maybe:用图神经网络增强JavaScript调用图构建
论文阅读·人工智能·软件工程
大模型真好玩1 小时前
准确率飙升!Graph RAG如何利用知识图谱提升RAG答案质量(四)——微软GraphRAG代码实战
人工智能·python·mcp
Baihai_IDP1 小时前
vec2text 技术已开源!一定条件下,文本嵌入向量可“近乎完美地”还原
人工智能·面试·llm
江太翁1 小时前
Pytorch torch
人工智能·pytorch·python
拓端研究室2 小时前
专题:2025即时零售与各类人群消费行为洞察报告|附400+份报告PDF、原数据表汇总下载
大数据·人工智能
网安INF2 小时前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归