神经网络入门实战:(一)神经网络解决的两种问题,以及AI、机器学习、深度学习三者之间的逻辑关系

AI、机器学习、深度学习三者之间的逻辑关系:


两种问题

(1)回归问题

回归问题是指预测一个或多个连续值的任务。这些连续值可以是任意实数,比如价格、温度、分数等。

回归问题的目标通常是 找到一个函数 ,该函数可以将输入变量(特征)映射到输出变量(目标值)上,使得预测值与实际值之间的误差最小。

  • 示例:预测房价。输入变量可能包括房屋的面积、位置、房间数量等,输出变量是房价。
  • 评估方法:常用的评估指标包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)等。

(2)分类问题

分类问题是指将输入变量映射到离散的类别标签上的任务。这些类别标签通常是整数或者字符串,表示不同的类别。

分类问题可以进一步分为二分类(两个类别)和多分类(多于两个类别)。

  • 示例:判断邮件是否为垃圾邮件(二分类);识别图像中的物体(如猫、狗、汽车等,多分类)。
  • 评估方法:常用的评估指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1分数(F1 Score)等。对于多分类问题,还可以使用混淆矩阵(Confusion Matrix)来详细评估模型的性能。

下一篇
待发布
相关推荐
It's now5 小时前
Spring AI 基础开发流程
java·人工智能·后端·spring
Glad_R5 小时前
巧用AI流程图,让信息呈现更全面
人工智能·信息可视化·产品运营·流程图·产品经理
西南胶带の池上桜5 小时前
1.Pytorch模型应用(线性与非线性预测)
人工智能·pytorch·python
杀生丸学AI5 小时前
【无标题】VGGT4D:用于4D场景重建的视觉Transformer运动线索挖掘
人工智能·深度学习·3d·aigc·transformer·三维重建·视觉大模型
小和尚同志6 小时前
还在手动配置?这款开源软件让你一键配置 Claude Code 和 Codex
人工智能·aigc
阿正的梦工坊6 小时前
ProRL:延长强化学习训练,扩展大语言模型推理边界——NeurIPS 2025论文解读
人工智能·语言模型·自然语言处理
致Great6 小时前
Ollama 进阶指南
人工智能·gpt·chatgpt·agent·智能体
Nautiluss6 小时前
一起玩XVF3800麦克风阵列(八)
大数据·人工智能·嵌入式硬件·github·音频·语音识别
qq_430855886 小时前
线代第二章矩阵第四课:方阵的幂
算法·机器学习·矩阵