神经网络入门实战:(一)神经网络解决的两种问题,以及AI、机器学习、深度学习三者之间的逻辑关系

AI、机器学习、深度学习三者之间的逻辑关系:


两种问题

(1)回归问题

回归问题是指预测一个或多个连续值的任务。这些连续值可以是任意实数,比如价格、温度、分数等。

回归问题的目标通常是 找到一个函数 ,该函数可以将输入变量(特征)映射到输出变量(目标值)上,使得预测值与实际值之间的误差最小。

  • 示例:预测房价。输入变量可能包括房屋的面积、位置、房间数量等,输出变量是房价。
  • 评估方法:常用的评估指标包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)等。

(2)分类问题

分类问题是指将输入变量映射到离散的类别标签上的任务。这些类别标签通常是整数或者字符串,表示不同的类别。

分类问题可以进一步分为二分类(两个类别)和多分类(多于两个类别)。

  • 示例:判断邮件是否为垃圾邮件(二分类);识别图像中的物体(如猫、狗、汽车等,多分类)。
  • 评估方法:常用的评估指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1分数(F1 Score)等。对于多分类问题,还可以使用混淆矩阵(Confusion Matrix)来详细评估模型的性能。

下一篇
待发布
相关推荐
AIGC大时代41 分钟前
方法建议ChatGPT提示词分享
人工智能·深度学习·chatgpt·aigc·ai写作
糯米导航44 分钟前
ChatGPT Prompt 编写指南
人工智能·chatgpt·prompt
金融OG1 小时前
99.8 金融难点通俗解释:净资产收益率(ROE)
大数据·python·线性代数·机器学习·数学建模·金融·矩阵
Damon小智1 小时前
全面评测 DOCA 开发环境下的 DPU:性能表现、机器学习与金融高频交易下的计算能力分析
人工智能·机器学习·金融·边缘计算·nvidia·dpu·doca
赵孝正1 小时前
特征选择(机器学习)
人工智能·机器学习
QQ_7781329741 小时前
Pix2Pix:图像到图像转换的条件生成对抗网络深度解析
人工智能·神经网络
数据馅2 小时前
window系统annaconda中同时安装paddle和pytorch环境
人工智能·pytorch·paddle
高工智能汽车2 小时前
2025年新开局!谁在引领汽车AI风潮?
人工智能·汽车