【大语言模型】ACL2024论文-16 基于地图制图的罗马尼亚自然语言推理语料库的新型课程学习方法

【大语言模型】ACL2024论文-16 基于地图制图的罗马尼亚自然语言推理语料库的新型课程学习方法


目录

文章目录


基于地图制图的罗马尼亚自然语言推理语料库的新型课程学习方法

摘要:

本文的主要贡献是介绍了第一个公开的罗马尼亚语自然语言推理(NLI)语料库RoNLI,它包含58K训练句子对和6K验证及测试句子对。这些句子对通过远程监督获取和手动标注得到正确的标签。文章还提出了一种基于数据制图的新型课程学习策略,通过该策略改进了最佳模型。数据集和复现基线的代码已在GitHub上公开。

研究背景:

自然语言推理(NLI)任务是识别句子对中的蕴含关系,是自然语言理解(NLU)的关键任务之一。尽管NLI任务在构建对话代理、改进文本分类、机器翻译等自然语言处理(NLP)任务中非常重要,但针对低资源语言的NLI研究相对较少。罗马尼亚语作为一种低资源语言,缺乏公开的NLI语料库,这限制了在该语言上研究和开发NLI模型的可能性。

问题与挑战:

罗马尼亚语NLI任务面临的主要挑战包括:1)缺乏公开的NLI语料库;2)由于资源稀缺,难以训练有效的NLI模型;3)模型容易受到自动标注过程中的噪声影响。

如何解决:

本文通过以下方式解决上述挑战:1)创建了首个罗马尼亚语NLI语料库RoNLI;2)提出了一种基于数据制图的新型课程学习策略,以改善模型训练;3)通过手动标注验证和测试集,确保数据质量。

核心创新点:

  1. 创建了首个罗马尼亚语NLI语料库RoNLI,为研究罗马尼亚语NLI提供了基础资源。
  2. 提出了一种基于数据制图的新型课程学习策略,通过分析模型的训练动态来指导训练过程,从而提高模型性能。

算法模型:

  1. 基于远程学习的多种机器学习模型,包括基于词嵌入的浅层模型和基于Transformer的神经网络。
  2. Ro-BERT:针对罗马尼亚语的BERT变体,用于NLI任务。
  3. 基于数据制图的新课程学习策略,通过数据特性(如置信度和变异性)来指导模型训练。

实验效果:

  1. Ro-BERT在基线模型中表现最佳,但在整体F1分数上未能超过80%。
  2. 通过数据制图和课程学习策略,Ro-BERT + Cart-Stra-CL++模型在微F1和宏F1分数上分别达到了75%和59%,显示出统计学上的显著改进。
  3. 在SciNLI数据集上,Ro-BERT + Cart-Stra-CL++模型也取得了最佳性能,证明了其泛化能力。


相关工作:

本文提到了多个英语和其他语言的NLI数据集,如SNLI、MNLI、XNLI等,并讨论了它们的优缺点。此外,还提到了其他低资源语言NLI数据集的研究,如Creole、Indonesian和Turkish。

后续优化方向:

  1. 扩大RoNLI语料库的规模,以支持更复杂的NLI模型训练。
  2. 探索更多的课程学习策略,以进一步提高模型性能。
  3. 研究罗马尼亚语特有的语法和语义现象,以改进模型对罗马尼亚语的理解。
  4. 将RoNLI和新型课程学习策略应用于其他低资源语言,以促进这些语言NLI研究的发展。

后记

如果您对我的博客内容感兴趣,欢迎三连击 (***点赞、收藏和关注 ***)和留下您的评论,我将持续为您带来计算机人工智能前沿技术(尤其是AI相关的大语言模型,深度学习和计算机视觉相关方向)最新学术论文及工程实践方面的内容分享,助力您更快更准更系统地了解 AI前沿技术

相关推荐
AI生存日记2 分钟前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元25 分钟前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术29 分钟前
Stack Overflow,轰然倒下!
前端·人工智能·后端
超龄超能程序猿1 小时前
(三)PS识别:基于噪声分析PS识别的技术实现
图像处理·人工智能·计算机视觉
要努力啊啊啊1 小时前
YOLOv3-SPP Auto-Anchor 聚类调试指南!
人工智能·深度学习·yolo·目标检测·目标跟踪·数据挖掘
好开心啊没烦恼1 小时前
Python 数据分析:numpy,说人话,说说数组维度。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy
生态遥感监测笔记1 小时前
GEE利用已有土地利用数据选取样本点并进行分类
人工智能·算法·机器学习·分类·数据挖掘
天天扭码2 小时前
从图片到语音:我是如何用两大模型API打造沉浸式英语学习工具的
前端·人工智能·github
张彦峰ZYF2 小时前
从检索到生成:RAG 如何重构大模型的知识边界?
人工智能·ai·aigc