如何画出漂亮的决策树?

今天的内容介绍如何将决策树模型画出来。

进入实战部分!

首先安装所需的R包,并且载入:

复制代码
install.packages("rpart")
install.packages("rpart.plot")

library(rpart)
library(rpart.plot)

R包get!

下一步,使用mtcars数据集建立一个决策树模型,其中的mpg作为因变量,代码如下:

复制代码
tree <- rpart(mpg ~ hp + wt + am, data = mtcars)

将上述模型tree进行作图:

复制代码
rpart.plot(tree)

以右下角的方框内容为例,一个方框指代一个节点,其中的数字29指的是此决策树给出的预测值mpg=29,样本占总数的22%。

方框的颜色(这里为蓝色,可修改)与mpg的值成正比,即值越大,颜色越深。

可以通过代码改变决策树的展示风格,一共有6种风格可供选择,代码如下:

复制代码
par(mfrow = c(3, 2))
rpart.plot(tree, type = 0)
rpart.plot(tree, type = 1)
rpart.plot(tree, type = 2) #默认
rpart.plot(tree, type = 3)
rpart.plot(tree, type = 4)
rpart.plot(tree, type = 5)
par(mfrow = c(1, 1))

大家可以根据个人的喜好进行选择。

还可以添加一些额外的信息,比如每个节点的样本量,代码如下:

复制代码
rpart.plot(tree, extra = 101) # 添加样本量

也可以调整小数点保留的位数:

复制代码
rpart.plot(tree, digits = 5)

最后,调节上述节点的颜色为橘红色,代码如下:

复制代码
rpart.plot(tree, box.palette = "Oranges")

关于其它更多修饰,可以询问R的帮助系统:?rpart.plot

好啦,今天的内容就到这里。如果有帮助,记得分享给需要的人

参考文献

复制代码
https://cran.r-project.org/web/packages/rpart.plot/
相关推荐
sponge'40 分钟前
opencv学习笔记6:SVM分类器
人工智能·机器学习·支持向量机·1024程序员节
I'm a winner41 分钟前
基于YOLO算法的医疗应用专题:第一章 计算机视觉与深度学习概述
算法·yolo·计算机视觉
vir021 小时前
P1928 外星密码(dfs)
java·数据结构·算法·深度优先·1024程序员节
旋转小马1 小时前
XGBoost完整学习指南:从数据清洗到模型调参
机器学习·scikit-learn·xgboost·1024程序员节
喜欢吃燃面1 小时前
数据结构算法题:list
开发语言·c++·学习·算法·1024程序员节
寂静山林1 小时前
UVa 12991 Game Rooms
算法·1024程序员节
余俊晖2 小时前
RLVR训练多模态文档解析模型-olmOCR 2技术方案(模型、数据和代码均开源)
人工智能·算法·ocr·grpo
凉虾皮3 小时前
2024包河初中组
学习·算法·1024程序员节
m0_748233643 小时前
C++ 模板初阶:从函数重载到泛型编程的优雅过渡
java·c++·算法·1024程序员节
大象耶3 小时前
计算机视觉六大前沿创新方向
论文阅读·人工智能·深度学习·计算机网络·机器学习