如何画出漂亮的决策树?

今天的内容介绍如何将决策树模型画出来。

进入实战部分!

首先安装所需的R包,并且载入:

复制代码
install.packages("rpart")
install.packages("rpart.plot")

library(rpart)
library(rpart.plot)

R包get!

下一步,使用mtcars数据集建立一个决策树模型,其中的mpg作为因变量,代码如下:

复制代码
tree <- rpart(mpg ~ hp + wt + am, data = mtcars)

将上述模型tree进行作图:

复制代码
rpart.plot(tree)

以右下角的方框内容为例,一个方框指代一个节点,其中的数字29指的是此决策树给出的预测值mpg=29,样本占总数的22%。

方框的颜色(这里为蓝色,可修改)与mpg的值成正比,即值越大,颜色越深。

可以通过代码改变决策树的展示风格,一共有6种风格可供选择,代码如下:

复制代码
par(mfrow = c(3, 2))
rpart.plot(tree, type = 0)
rpart.plot(tree, type = 1)
rpart.plot(tree, type = 2) #默认
rpart.plot(tree, type = 3)
rpart.plot(tree, type = 4)
rpart.plot(tree, type = 5)
par(mfrow = c(1, 1))

大家可以根据个人的喜好进行选择。

还可以添加一些额外的信息,比如每个节点的样本量,代码如下:

复制代码
rpart.plot(tree, extra = 101) # 添加样本量

也可以调整小数点保留的位数:

复制代码
rpart.plot(tree, digits = 5)

最后,调节上述节点的颜色为橘红色,代码如下:

复制代码
rpart.plot(tree, box.palette = "Oranges")

关于其它更多修饰,可以询问R的帮助系统:?rpart.plot

好啦,今天的内容就到这里。如果有帮助,记得分享给需要的人

参考文献

复制代码
https://cran.r-project.org/web/packages/rpart.plot/
相关推荐
HelloDam5 分钟前
基于元素小组的归并排序算法
后端·算法·排序算法
HelloDam5 分钟前
基于连贯性算法的多边形扫描线生成(适用于凸多边形和凹多边形)【原理+java实现】
算法
uhakadotcom1 小时前
Apache Airflow入门指南:数据管道的强大工具
算法·面试·github
跳跳糖炒酸奶2 小时前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人
绵绵细雨中的乡音2 小时前
动态规划-第六篇
算法·动态规划
程序员黄同学2 小时前
动态规划,如何应用动态规划解决实际问题?
算法·动态规划
march_birds2 小时前
FreeRTOS 与 RT-Thread 事件组对比分析
c语言·单片机·算法·系统架构
斯汤雷3 小时前
Matlab绘图案例,设置图片大小,坐标轴比例为黄金比
数据库·人工智能·算法·matlab·信息可视化
云 无 心 以 出 岫3 小时前
贪心算法QwQ
数据结构·c++·算法·贪心算法
俏布斯4 小时前
算法日常记录
java·算法·leetcode