【大数据学习 | Spark调优篇】常用的shuffle优化

shuffle是一个涉及到CPU(序列化反序列化)、网络IO(跨节点数据传输)以及磁盘IO(shuffle中间结果落盘)的操作。

优化思路:

减少shuffle的数据量,减少shuffle的次数。

具体方式:

  • 能不shuffle的时候尽量不要shuffle数据,可以使用mapjoin广播变量broadcast);
  • 能用reduceByKey就不要用groupByKey,因为reducerByKey会在shuffle前进行本地聚合(map阶段进行预聚合combine),减少写出中间文件的个数,从而可以使在shuffle过程中减少磁盘IO;
  • spark2.0后已经没有HashShuffleManager,只有SortShuffleManager,SortShuffleManager内部有3种shuffle操作,可适应小中大集群。
  • 参数调节:如下

spark.reducer.maxSizeInFlight:reduce task的拉取缓存,默认48m

spark.shuffle.file.buffer:map task的写磁盘缓存,默认32k

spark.shuffle.io.maxRetries:拉取失败的最大重试次数,默认3次

spark.shuffle.io.retryWait:拉取失败的重试间隔,默认5s

相关推荐
珠海西格电力6 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
LJ97951116 小时前
AI如何重构媒介宣发:从资源博弈到智能匹配的技术跃迁
大数据
哈里谢顿6 小时前
记录一次sql优化记录
mysql
数据大魔方6 小时前
【期货量化实战】日内动量策略:顺势而为的短线交易法(Python源码)
开发语言·数据库·python·mysql·算法·github·程序员创富
Chasing Aurora7 小时前
数据库连接+查询优化
数据库·sql·mysql·prompt·约束
数据皮皮侠AI8 小时前
上市公司股票名称相似度(1990-2025)
大数据·人工智能·笔记·区块链·能源·1024程序员节
Zoey的笔记本8 小时前
金融行业数据可视化平台:破解数据割裂与决策迟滞的系统性方案
大数据·信息可视化·数据分析
渐暖°8 小时前
JDBC直连ORACLE进行查询
数据库·oracle
2501_933670798 小时前
大数据与财务管理专业就业岗位方向
大数据
萧曵 丶9 小时前
Next-Key Lock、记录锁、间隙锁浅谈
数据库·sql·mysql·mvcc·可重复读·幻读