<项目代码>YOLOv8 航拍行人识别<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情可以参考博主写的博客<数据集>航拍行人识别数据集<目标检测>https://blog.csdn.net/qq_53332949/article/details/140863855

数据集下载链接:

点击下载https://download.csdn.net/download/qq_53332949/89720091?spm=1001.2101.3001.9500

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone
  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
- Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
- Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 R_curve.png

3.4 results.png

3.5 F1_curve

3.6 confusion_matrix

3.7 confusion_matrix_normalized

​​

3.8 识别效果图

相关推荐
全栈派森2 小时前
BI数据开发全攻略:数据仓库、模型搭建与指标处理
数据仓库·python·程序人生
XIAO·宝3 小时前
深度学习------专题《图像处理项目》终!
人工智能·深度学习
铁手飞鹰3 小时前
从零复现论文:深度学习域适应1
linux·pytorch·python·深度学习·ubuntu·ai·迁移学习
Nautiluss3 小时前
WIN7下安装RTX3050 6GB显卡驱动
人工智能·驱动开发·opencv
wwww.bo4 小时前
深度学习(5)完整版
人工智能·深度学习
yourkin6665 小时前
什么是神经网络?
人工智能·深度学习·神经网络
嘀咕博客5 小时前
Frames:Runway推出的AI图像生成模型,提供前所未有的风格控制和视觉一致性
人工智能·ai工具
isNotNullX6 小时前
ETL详解:从核心流程到典型应用场景
大数据·数据仓库·人工智能·架构·etl
薰衣草23336 小时前
力扣——位运算
python·算法·leetcode
科技峰行者6 小时前
通义万相2.5系列模型发布,可生成音画同步视频
人工智能·阿里云·ai·大模型·agi