HBase难点

查询优化

  • 一次Scan会返回大量数据,客户端向HBase发送一次Scan请求,实际上并不会将所有数据加载到本地,而是通过多次RPC请求进行加载,防止客户端OOM。
  • 禁止缓存优化:批量读取数据时会全表扫描一次业务表,这种提现在Scan操作场景。在Scan时,客户端与RegionServer进行数据交互(RegionServer的实际数据时存储在HDFS上),将数据加载到缓存,如果加载很大的数据到缓存时,会对缓存中的实时业务热数据有影响,由于缓存大小有限,加载的数据量过大,会将这些热数据"挤压"出去,这样当其他业务从缓存请求这些数据时,会从HDFS上重新加载数据,导致耗时严重。在批量读取(T+1)场景时,建议客户端在请求是,在业务代码中调用setCacheBlocks(false)函数来禁止缓存,默认情况下,HBase是开启这部分缓存的。
  • get数据和批量get数据,批量get时可以有效的较少客户端到各个RegionServer之间RPC连接数。
  • 在查询的时候,可以查询指定我们需要返回结果的列,最好是同一个列族,对于不需要的列,可以不需要指定,这样能够有效地的提高查询效率,降低延时。
  • 禁止缓存优化

Rowkey设计原则

  • Rowkey长度原则:Rowkey是一个二进制码流,Rowkey的长度被很多开发者建议说设计在10~100个字节,不过建议是越短越好,不要超过16个字节。
  • Rowkey散列原则
  • Rowkey唯一原则
相关推荐
加勒比海涛1 分钟前
Spring Cloud Gateway 实战:从网关搭建到过滤器与跨域解决方案
数据库·redis·缓存
belldeep5 分钟前
java:如何用 JDBC 连接 TDSQL 数据库
java·数据库·jdbc·tdsql
大数据CLUB2 小时前
基于spark的航班价格分析预测及可视化
大数据·hadoop·分布式·数据分析·spark·数据可视化
格调UI成品2 小时前
预警系统安全体系构建:数据加密、权限分级与误报过滤方案
大数据·运维·网络·数据库·安全·预警
reddingtons5 小时前
Adobe Firefly AI驱动设计:实用技巧与创新思维路径
大数据·人工智能·adobe·illustrator·photoshop·premiere·indesign
G皮T6 小时前
【Elasticsearch】全文检索 & 组合检索
大数据·elasticsearch·搜索引擎·全文检索·match·query·组合检索
心平愈三千疾6 小时前
通俗理解JVM细节-面试篇
java·jvm·数据库·面试
我科绝伦(Huanhuan Zhou)9 天前
Oracle|Oracle SQL*Plus 配置上下翻页功能
数据库·sql·oracle
Cachel wood9 天前
Spark教程6:Spark 底层执行原理详解
大数据·数据库·分布式·计算机网络·spark
Sally璐璐9 天前
数据标注工具详解
大数据·ai