pytorch evaluate model(torch.no_grad() and model.eval())

  • 使用 torch.no_grad():这是一个上下文管理器(context manager),用于暂时禁用在其作用域内的所有计算的梯度计算。这在模型评估阶段非常有用,因为它可以减少内存消耗并提高计算效率,因为验证过程中不需要计算梯度信息。

  • 调用 model.eval():这将模型设置为评估模式。在这种模式下,模型中的某些层(如批量归一化层 BatchNorm 和 dropout 层)会改变其行为,以适应评估(例如,BatchNorm 层会使用在训练时收集的运行时统计数据,而 dropout 层会关闭)。

py 复制代码
import torch
from torch.utils.data import DataLoader
from sklearn.metrics import accuracy_score

def evaluate_model(model, data_loader, device):
    """
    对给定的模型和数据加载器进行验证。
    
    参数:
    - model: 要验证的PyTorch模型。
    - data_loader: 数据的PyTorch DataLoader。
    - device: 用于模型和数据的设备('cuda' 或 'cpu')。
    """
    # 将模型设置为评估模式,这会关闭dropout和batch normalization层的训练行为
    model.eval()
    
    # 初始化度量指标
    total_correct = 0
    total_samples = 0
    
    # 使用torch.no_grad()上下文管理器来禁用梯度计算
    with torch.no_grad():
       # 遍历数据加载器中的所有批次
        for inputs, targets in data_loader:
            # 将数据移动到指定的设备
            inputs, targets = inputs.to(device), targets.to(device)
            
            # 前向传播,获取模型输出
            outputs = model(inputs)
            
            # 计算预测结果
            _, predicted = torch.max(outputs, 1)
            
            # 计算准确度
            correct = (predicted == targets).sum().item()
            
            total_correct += correct
            total_samples += targets.size(0)
    
    # 计算总体准确度
    accuracy = total_correct / total_samples
    
    return accuracy
相关推荐
软件聚导航8 分钟前
从 AI 画马到马年红包封面,我还做了一个小程序
人工智能·chatgpt
啊森要自信23 分钟前
CANN ops-cv:AI 硬件端视觉算法推理训练的算子性能调优与实战应用详解
人工智能·算法·cann
要加油哦~26 分钟前
AI | 实践教程 - ScreenCoder | 多agents前端代码生成
前端·javascript·人工智能
玄同76527 分钟前
从 0 到 1:用 Python 开发 MCP 工具,让 AI 智能体拥有 “超能力”
开发语言·人工智能·python·agent·ai编程·mcp·trae
新缸中之脑30 分钟前
用RedisVL构建长期记忆
人工智能
J_Xiong011737 分钟前
【Agents篇】07:Agent 的行动模块——工具使用与具身执行
人工智能·ai agent
SEO_juper43 分钟前
13个不容错过的SEO技巧,让您的网站可见度飙升
人工智能·seo·数字营销
小瑞瑞acd44 分钟前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
CoderJia程序员甲1 小时前
GitHub 热榜项目 - 日榜(2026-02-06)
人工智能·ai·大模型·github·ai教程
wukangjupingbb1 小时前
AI多模态技术在创新药研发中的结合路径、机制及挑战
人工智能