pytorch evaluate model(torch.no_grad() and model.eval())

  • 使用 torch.no_grad():这是一个上下文管理器(context manager),用于暂时禁用在其作用域内的所有计算的梯度计算。这在模型评估阶段非常有用,因为它可以减少内存消耗并提高计算效率,因为验证过程中不需要计算梯度信息。

  • 调用 model.eval():这将模型设置为评估模式。在这种模式下,模型中的某些层(如批量归一化层 BatchNorm 和 dropout 层)会改变其行为,以适应评估(例如,BatchNorm 层会使用在训练时收集的运行时统计数据,而 dropout 层会关闭)。

py 复制代码
import torch
from torch.utils.data import DataLoader
from sklearn.metrics import accuracy_score

def evaluate_model(model, data_loader, device):
    """
    对给定的模型和数据加载器进行验证。
    
    参数:
    - model: 要验证的PyTorch模型。
    - data_loader: 数据的PyTorch DataLoader。
    - device: 用于模型和数据的设备('cuda' 或 'cpu')。
    """
    # 将模型设置为评估模式,这会关闭dropout和batch normalization层的训练行为
    model.eval()
    
    # 初始化度量指标
    total_correct = 0
    total_samples = 0
    
    # 使用torch.no_grad()上下文管理器来禁用梯度计算
    with torch.no_grad():
       # 遍历数据加载器中的所有批次
        for inputs, targets in data_loader:
            # 将数据移动到指定的设备
            inputs, targets = inputs.to(device), targets.to(device)
            
            # 前向传播,获取模型输出
            outputs = model(inputs)
            
            # 计算预测结果
            _, predicted = torch.max(outputs, 1)
            
            # 计算准确度
            correct = (predicted == targets).sum().item()
            
            total_correct += correct
            total_samples += targets.size(0)
    
    # 计算总体准确度
    accuracy = total_correct / total_samples
    
    return accuracy
相关推荐
乌旭36 分钟前
量子计算与GPU的异构加速:基于CUDA Quantum的混合编程实践
人工智能·pytorch·分布式·深度学习·ai·gpu算力·量子计算
deephub2 小时前
CLIMB自举框架:基于语义聚类的迭代数据混合优化及其在LLM预训练中的应用
人工智能·深度学习·大语言模型·聚类
思通数科AI全行业智能NLP系统3 小时前
AI视频技术赋能幼儿园安全——教师离岗报警系统的智慧守护
大数据·人工智能·安全·目标检测·目标跟踪·自然语言处理·ocr
struggle20254 小时前
deepseek-cli开源的强大命令行界面,用于与 DeepSeek 的 AI 模型进行交互
人工智能·开源·自动化·交互·deepseek
ocr_sinosecu15 小时前
OCR定制识别:解锁文字识别的无限可能
人工智能·机器学习·ocr
fish_study_csdn5 小时前
pytest 技术总结
开发语言·python·pytest
奋斗者1号5 小时前
分类数据处理全解析:从独热编码到高维特征优化
人工智能·机器学习·分类
咖啡调调。5 小时前
使用Django框架表单
后端·python·django
BO_S__5 小时前
python调用ffmpeg对截取视频片段,可批量处理
python·ffmpeg·音视频
契合qht53_shine5 小时前
深度学习 视觉处理(CNN) day_02
人工智能·深度学习·cnn