【NLP高频面题 - LLM架构篇】大模型使用SwiGLU相对于ReLU有什么好处?

【NLP高频面题 - LLM架构篇】大模型使用SwiGLU相对于ReLU有什么好处?

重要性:★★★ 💯


NLP Github 项目:


使用的SwiGLU替换ReLU最重要的原因是SwiGLU可以更好的捕获序列的特征。

① 使用ReLU的FFN的计算公式:

② 使用SwiGLU的FFN的计算公式:

更直观的看下ReLU和SwiGLU的可视化对比:

Swish 激活函数在参数 β 不同取值下的形状:

SwiGLU在计算中引入了门控机制,门控机制可以使用更软性的权重筛选有用的信息,并且梯度更平滑。这么做有以下几个主要好处:

  1. 动态门控机制:SwiGLU继承了GLU的门控特性,通过使用sigmoid函数作为门控器,可以对输入信号进行筛选和选择性放大。这种门控机制允许模型自适应地选择哪些信息是重要的,从而有助于提高模型对数据的表示能力。
  2. 增加非线性和复杂度:SwiGLU通过引入Swish激活函数,为神经网络增添了更多的非线性,使得模型能够捕捉和学习数据中更为复杂的特征和模式。
  3. 提高信息流动的效率:SwiGLU的门控机制使得模型能够更有效地管理和调整信息的流动,减少无关信息的干扰,提高了信息处理的效率。
  4. 避免"dying ReLU"问题:ReLU的一个主要问题是"dying ReLU",即某些神经元在训练过程中可能永远不会被激活,导致这些神经元对网络的贡献为零。SwiGLU通过其动态门控机制,减少了这种问题的发生。
  5. 提高模型精度:在某些任务中,SwiGLU可以显著提高模型的精度,尤其是在自然语言处理任务中,如GLUE和SuperGLUE,SwiGLU的使用可以带来超过4%的精度提升。

拔高(举一反三):深刻理解门控机制,并且知晓门控机制在LSTM、IA3中都有应用。

门机制:控制水闸的门就能阻止或者释放水流。类似的,门机制的作用是控制数据的流动。

如上图所示,门的开合程度由 0.0 ~1.0 的实数表示,通过这个数值控制流出的水量,sigmoid 函数用于求门的开合程度(sigmoid 函数的输出范围在 0.0 ~ 1.0)。

① LSTM 中门控机制的应用:

② PEFT的IA3方法中门控机制的应用:

IA3的思想:抑制和放大内部激活,通过可学习的向量对激活值进行抑制或放大。具体来说,会对K、V、FFN三部分的值进行调整,训练过程中同样冻结原始模型的权重,只更新可学习的部分向量部分。训练完成后,与Lora类似,也可以将学习部分的参数与原始权重合并,没有额外推理开销。


NLP 大模型高频面题汇总

NLP基础篇
【NLP 面试宝典 之 模型分类】 必须要会的高频面题
【NLP 面试宝典 之 神经网络】 必须要会的高频面题
【NLP 面试宝典 之 主动学习】 必须要会的高频面题
【NLP 面试宝典 之 超参数优化】 必须要会的高频面题
【NLP 面试宝典 之 正则化】 必须要会的高频面题
【NLP 面试宝典 之 过拟合】 必须要会的高频面题
【NLP 面试宝典 之 Dropout】 必须要会的高频面题
【NLP 面试宝典 之 EarlyStopping】 必须要会的高频面题
【NLP 面试宝典 之 标签平滑】 必须要会的高频面题
【NLP 面试宝典 之 Warm up 】 必须要会的高频面题
【NLP 面试宝典 之 置信学习】 必须要会的高频面题
【NLP 面试宝典 之 伪标签】 必须要会的高频面题
【NLP 面试宝典 之 类别不均衡问题】 必须要会的高频面题
【NLP 面试宝典 之 交叉验证】 必须要会的高频面题
【NLP 面试宝典 之 词嵌入】 必须要会的高频面题
【NLP 面试宝典 之 One-Hot】 必须要会的高频面题
...
BERT 模型面
【NLP 面试宝典 之 BERT模型】 必须要会的高频面题
【NLP 面试宝典 之 BERT变体】 必须要会的高频面题
【NLP 面试宝典 之 BERT应用】 必须要会的高频面题
...
LLMs 微调面
【NLP 面试宝典 之 LoRA微调】 必须要会的高频面题
【NLP 面试宝典 之 Prompt】 必须要会的高频面题
【NLP 面试宝典 之 提示学习微调】 必须要会的高频面题
【NLP 面试宝典 之 PEFT微调】 必须要会的高频面题
【NLP 面试宝典 之 Chain-of-Thought微调】 必须要会的高频面题
...
相关推荐
春哥的研究所16 分钟前
AI人工智能名片小程序源码系统,名片小程序+分销商城+AI客服,包含完整搭建教程
人工智能·微信小程序·小程序
ahead~20 分钟前
【大模型入门】访问GPT_API实战案例
人工智能·python·gpt·大语言模型llm
喜欢吃豆20 分钟前
深入企业内部的MCP知识(三):FastMCP工具转换(Tool Transformation)全解析:从适配到增强的工具进化指南
java·前端·人工智能·大模型·github·mcp
pany27 分钟前
写代码的节奏,正在被 AI 改写
前端·人工智能·aigc
我爱一条柴ya1 小时前
【AI大模型】神经网络反向传播:核心原理与完整实现
人工智能·深度学习·神经网络·ai·ai编程
万米商云1 小时前
企业物资集采平台解决方案:跨地域、多仓库、百部门——大型企业如何用一套系统管好百万级物资?
大数据·运维·人工智能
新加坡内哥谈技术1 小时前
Google AI 刚刚开源 MCP 数据库工具箱,让 AI 代理安全高效地查询数据库
人工智能
慕婉03071 小时前
深度学习概述
人工智能·深度学习
大模型真好玩1 小时前
准确率飙升!GraphRAG如何利用知识图谱提升RAG答案质量(额外篇)——大规模文本数据下GraphRAG实战
人工智能·python·mcp
19891 小时前
【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·近邻算法