【大语言模型】LangChain LCEL 表达式语言


【大语言模型】LangChain LCEL 表达式语言

一、简介

LangChain LCEL 的全称为 LangChain Expression Language 即可直译为 LangChain 表达式。

为了构造更复杂的 LLM 应用并且更为简便快捷的构造 LLM 应用,Langchain 提供了类似"管道"的形式去声明提示词模板(prompt),即用 "|" 来连接各个组件之间的操作。也就是 LCEL 允许开发者将不同的模块进行简单的形式实现串联。语法如下所示:
chain = 提示词板 | 大模型调用 | 输出解析器

二、LCEL的优势

很多人疑惑的一点可能在于明明基于官方的 API 也可以实现请求响应的一系列过程,为何还要多此一举使用 LCEL 呢?

python 复制代码
import os
# OpenAI提供的python公共库
from openai import OpenAI
import os

os.environ["OPENAI_API_KEY"] = "xxxxxxxxxxxxx"  # 将个人token替换到这个位置
os.environ["OPENAI_API_BASE"] = "xxxxxxxxxxxxx"

# 设置OpenAI Token
client = OpenAI(api_key=os.environ.get('OPENAI_API_KEY'), base_url=os.environ.get('OPENAI_API_BASE'))
chat_completion = client.chat.completions.create(
    # 声明调用的模型名称
    model='gpt-3.5-turbo',
    # temperature用来设置大模型返回数据的随机性和创造性,较低的数值返回的数据就更贴近现实。
    temperature=0.0,
    # 消息内容,可以包含上下文信息,列表数据中的顺序就是对话发生的顺序
    messages=[{'role': 'user', 'content': '1+1等于几?'}]
)
print(chat_completion)

# 从返回数据中拿到具体的答案信息
answer = chat_completion.choices[0].message.content
# 打印调试信息
print(answer)
python 复制代码
tCompletion(id='chatcmpl-AbP4L1ArFNwLSzwRKVh5LrAwP9Pe2', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='1+1等于2。', refusal=None, role='assistant', audio=None, function_call=None, tool_calls=None))], created=1733477865, model='gpt-3.5-turbo-0125', object='chat.completion', service_tier=None, system_fingerprint=None, usage=CompletionUsage(completion_tokens=7, prompt_tokens=15, total_tokens=22, completion_tokens_details=CompletionTokensDetails(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0), prompt_tokens_details=PromptTokensDetails(audio_tokens=0, cached_tokens=0)))
1+1等于2。

从以上代码中可以看出以下几个问题:

1.官方提供的主要功能为请求的发送,具体发送的数据 messages 部分需要用户自己组织和维护。

2.返回的数据 response 部分也只是简单的组装了一个结构。有过开发经验的同学都深有感触,如果每次给到的返回信息从结构到内容都是不一样的,作为调用方,则需要编写无数行代码去处理这些异常。
而 LCEL 语法形式使得数据流程清晰,通过 pipeline 的形式,可以清晰地定义数据的流向以及处理的流程,使得代码更易于理解和维护。

三、LCEL 的基本使用

在使用 LCEL 表达式时,需要先了解其中所包含的元素:

  • |:连接符
  • Runnable对象:可执行操作

1、Runnable 对象

Runnable 对象意为可执行操作,每个LCEL表达式都需要runnable 对象以及"|"连接符,使得LCEL 对象可以自动支持这些调用。

其中 Runnable 对象需要包含以下三个接口:

  • stream:以流式返回输出结果。
  • invoke:基于-个input调用 Runnable。
  • batch:基于一个list的input 批量调用 Runnable。

所有的 Runnable 对象都具有共同的属性,即输入架构与输出架构。常见的输入和输出类型如下所示

Component input Type output Type
Prdmpt dictonary prompt Value
LLM String, list of messages or Prompt Value String
ChatModel String, list of messages or Prompt Value ChatMessage
Retriever Single String List of Documents
Tool String/Dictonary Tool dependent
Output Parser Output of LLM or ChatModel Parser dependent

四、实战实例

python 复制代码
import os
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

import os

os.environ["OPENAI_API_KEY"] = "xxxxxxxxxx"  # 将个人token替换到这个位置
os.environ["OPENAI_API_BASE"] = "xxxxxxxxxx"

# 1、提示词模板 ->PromptValue
prompt = ChatPromptTemplate.from_template("出给一个关于{goods}的广告宜传语")
# 2、ChatGPT模型调用对象
model = ChatOpenAI()

# 将ChatGPT返回结果转换为字符串的处理器对象
output_parser = StrOutputParser()
# 将三个对象根据使用顺序组合成一个调用链,实现提示词组装、模型调用、结果解析的功能
# 业务流程  提示 调用  解析
chain = prompt | model | output_parser

# 输入提示词模版中的变量部分,调用链会自动完成后续的调用和解析
res = chain.invoke({"goods": "音乐节"})

print(res)

"跟随音乐的节拍,感受心灵的共鸣。音乐节邀您共同享受狂欢,释放激情,感受无限快乐!"

相关推荐
星期天要睡觉14 分钟前
深度学习——数据增强(Data Augmentation)
人工智能·深度学习
南山二毛2 小时前
机器人控制器开发(导航算法——导航栈关联坐标系)
人工智能·架构·机器人
大数据张老师2 小时前
【案例】AI语音识别系统的标注分区策略
人工智能·系统架构·语音识别·架构设计·后端架构
xz2024102****2 小时前
吴恩达机器学习合集
人工智能·机器学习
anneCoder2 小时前
AI大模型应用研发工程师面试知识准备目录
人工智能·深度学习·机器学习
骑驴看星星a2 小时前
没有深度学习
人工智能·深度学习
youcans_2 小时前
【医学影像 AI】YoloCurvSeg:仅需标注一个带噪骨架即可实现血管状曲线结构分割
人工智能·yolo·计算机视觉·分割·医学影像
空白到白2 小时前
机器学习-决策树
人工智能·决策树·机器学习
奇舞精选2 小时前
超越Siri的耳朵:ASR与Whisper零代码部署实战指南
前端·人工智能·aigc
说私域2 小时前
兴趣电商内容数据洞察未来市场走向研究——基于开源AI智能名片链动2+1模式S2B2C商城小程序的实践
人工智能·小程序