3D 生成重建015-Feature 3DGS理解3DGS场景内的一切

33D 生成重建015-Feature 3DGS理解3DGS场景内的一切


文章目录

    • [0 论文工作](#0 论文工作)
    • [1 方法介绍](#1 方法介绍)
    • [2 实验效果](#2 实验效果)

0 论文工作

论文提出了一种名为"Feature 3DGS"的方法,该方法通过整合二维基础模型(如SAM和CLIP-LSeg)的特征场蒸馏,显著增强了三维高斯点渲染(3D Gaussian Splatting,3DGS)的功能。这种改进不仅限于新视角合成,还扩展到语义分割、语言引导的编辑和可提示的分割任务等。

主要贡献:

方法创新:提出了一种基于3DGS的新框架,用于通过二维模型指导进行特征场蒸馏。

性能提升:该方法相比基于NeRF的方法,训练和渲染速度提升至2.7倍,同时在语义分割任务中实现了23%的mIoU改进。

多样化应用:展示了方法在语义分割、语言引导的编辑及无提示的分割任务中的优越性能。

首次支持提示编辑:利用SAM模型实现了对三维场景的点和边界框提示操作。

核心改进:

针对NeRF方法的局限性(训练和渲染速度慢、连续性伪影),本文提出了一种并行N维高斯渲染器,并结合卷积解码器加速训练和渲染。

实验结果表明,该方法在保持高效的同时,能生成高质量的语义特征场和图像,适用于多种下游任务。

应用场景:

论文证明了其方法在新视角语义分割、语言引导编辑以及实时渲染等任务中的潜力,特别适用于需要高效且精确的三维语义表示场景。

在更早的Segment Anything in 3D with NeRFs中是更早用sam信息蒸馏到3D表示中。不过期间的nerf可以用新的分支来存放预测语音特征。在3DGS中原来的管道直接渲染高纬度的特征会很慢,论文提出先渲染一个低纬度特征再升维特征的方法进行加速。前期也有直接用CLIP,DINO的特征进行场景的理解的工作。
paper
github

1 方法介绍

下图是论文的结构图, ( x , ( q , s ) , c , α , f ) (x, (q,s), c, \alpha , f) (x,(q,s),c,α,f),q, s表示的是四元组表示的旋转平移,f是语义特征。语义的渲染方式跟图像的渲染方式一样。只不过如果直接渲染高位的SAM或者CLIP特征的话,维度会很高,这就会造成基础管线并不支持 这样的操作。为了简化问题,语义特征先优化一个低维的语义特征,然后进行升维。升维的信息用2d的基础模型进行监督。通过训练优化后语义信息就潜入到f中。也许我们可以找到新的方式来优化这个特征的潜入方式。i think.

2 实验效果

实验结果可以在网站找到,project

相关推荐
郜太素10 分钟前
PyTorch 张量与自动微分操作
人工智能·pytorch·python·深度学习·学习方法·张量·自动微分
sheng_er_sheng11 分钟前
【笔记】【B站课程 pytorch】梯度下降模型
人工智能·pytorch·笔记
DevangLic12 分钟前
【CUDA pytorch】
人工智能·pytorch·python
QQ6765800817 分钟前
PyTorch和torchvision为例,如何使用预训练的ResNet模型来训练水稻虫害分类数据集 14类 从数据准备到模型训练、评估全流程
人工智能·pytorch·分类
flying_131432 分钟前
面试常问系列(一)-神经网络参数初始化-之自注意力机制为什么除以根号d而不是2*根号d或者3*根号d
人工智能·深度学习·神经网络·transformer·注意力机制
小oo呆40 分钟前
【自然语言处理与大模型】LlamaIndex的词嵌入模型和向量数据库
人工智能·自然语言处理
eve杭1 小时前
游戏代码C
c语言·人工智能·python·游戏·ai
不当菜鸡的程序媛1 小时前
FastComposer论文问题与解决
人工智能·深度学习·计算机视觉
挽安学长2 小时前
ChatGPT对话导出工具-轻松提取聊天记录导出至本地[特殊字符]安装指南
人工智能·ai·科研
Hello server2 小时前
AI Agent 入门指南:从 LLM 到智能体
人工智能·ai·chatgpt·agent